河北省唐山市乐亭一中2023年高二数学第一学期期末达标检测试题含解析_第1页
河北省唐山市乐亭一中2023年高二数学第一学期期末达标检测试题含解析_第2页
河北省唐山市乐亭一中2023年高二数学第一学期期末达标检测试题含解析_第3页
河北省唐山市乐亭一中2023年高二数学第一学期期末达标检测试题含解析_第4页
河北省唐山市乐亭一中2023年高二数学第一学期期末达标检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省唐山市乐亭一中2023年高二数学第一学期期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的定义域为,其导函数的图像如图所示,则函数极值点的个数为()A.2 B.3C.4 D.52.已知函数,则()A. B.0C. D.13.已知双曲线C的离心率为,则双曲线C的渐近线方程为()A. B.C. D.4.焦点为的抛物线标准方程是()A. B.C. D.5.若函数的导函数在区间上是减函数,则函数在区间上的图象可能是()A. B.C. D.6.在各项均为正数的等比数列中,若,则()A.6 B.12C.56 D.787.已知,则在方向上的投影为()A. B.C. D.8.已知函数只有一个零点,则实数的取值范围是()A B.C. D.9.已知直线l与圆交于A,B两点,点满足,若AB的中点为M,则的最大值为()A. B.C. D.10.命题“存在,”的否定是()A.存在, B.存在,C.对任意, D.对任意,11.已知等比数列的前项和为,若公比,则=()A. B.C. D.12.已知抛物线上一点的纵坐标为4,则点到抛物线焦点的距离为A.2 B.3C.4 D.5二、填空题:本题共4小题,每小题5分,共20分。13.复数的共轭复数是__________14.直线l过抛物线的焦点F,与抛物线交于A,B两点,若,则直线l的斜率为______15.在等比数列中,,,若数列满足,则数列的前项和为________16.命题“任意,”为真命题,则实数a的取值范围是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点A(0,-2),椭圆E:(a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点.(1)求E的方程;(2)设过点A的动直线l与E相交于P,Q两点.当△OPQ的面积最大时,求l的方程.18.(12分)已知椭圆的离心率为,且经过点.(1)求椭圆的方程;(2)经过点的直线与椭圆交于不同的两点,,为坐标原点,若的面积为,求直线的方程.19.(12分)(1)求焦点在x轴上,虚轴长为12,离心率为的双曲线的标准方程;(2)求经过点的抛物线的标准方程;20.(12分)已知椭圆的左、右焦点分别是,,离心率为,过且垂直于x轴的直线被椭圆C截得的线段长为1(1)求椭圆C方程;(2)设点P在直线上,过点P的两条直线分别交曲线C于A,B两点和M,N两点,且,求直线AB的斜率与直线MN的斜率之和21.(12分)已知数列是等差数列,为其前n项和,,(1)求的通项公式;(2)若,求证:为等比数列22.(10分)如图所示,四棱锥的底面为直角梯形,,,,,底面,为的中点(1)求证:平面平面;(2)求点到平面的距离

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据给定的导函数的图象,结合函数的极值的定义,即可求解.【详解】如图所示,设导函数的图象与轴的交点分别为,根据函数的极值的定义可知在该点处的左右两侧的导数符号相反,可得为函数的极大值点,为函数的极小值点,所以函数极值点的个数为4个.故选:C.2、B【解析】先求导,再代入求值.详解】,所以.故选:B3、B【解析】根据双曲线的离心率,求出即可得到结论【详解】∵双曲线的离心率是,∴,即1+,即1,则,即双曲线的渐近线方程为,故选:B4、D【解析】设抛物线的方程为,根据题意,得到,即可求解.【详解】由题意,设抛物线的方程为,因为抛物线的焦点为,可得,解得,所以抛物线的方程为.故选:D.5、A【解析】根据导数概念和几何意义判断【详解】由题意得,图象上某点处的切线斜率随增大而减小,满足要求的只有A故选:A6、D【解析】由等比数列的性质直接求得.【详解】在等比数列中,由等比数列的性质可得:由,解得:;由可得:,所以.故选:D7、C【解析】利用向量数量积的几何意义即得【详解】,故在方向上的投影为:故选:C8、B【解析】将题目转化为函数的图像与的图像只有一个交点,利用导数研究函数的单调性与极值,作出图像,利用数形结合求出的取值范围.【详解】由函数只有一个零点,等价于函数的图像与的图像只有一个交点,,求导,令,得当时,,函数在上单调递减;当时,,函数在上单调递增;当时,,函数在上单调递减;故当时,函数取得极小值;当时,函数取得极大值;作出函数图像,如图所示,由图可知,实数的取值范围是故选:B【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.9、A【解析】设,,则、,由点在圆上可得,再由向量垂直的坐标表示可得,进而可得M的轨迹为圆,即可求的最大值.【详解】设,中点,则,,又,,则,所以,又,则,而,,所以,即,综上,,整理得,即为M的轨迹方程,所以在圆心为,半径为的圆上,则.故选:A.【点睛】关键点点睛:由点圆位置、中点坐标公式及向量垂直的坐标表示得到关于的轨迹方程.10、D【解析】特称命题的否定:将存在改任意并否定原结论,即可知正确答案.【详解】由特称命题的否定为全称命题,知:原命题的否定为:对任意,.故选:D11、A【解析】根据题意,由等比数列的通项公式与前项和公式直接计算即可.【详解】由已知可得.故选:A.12、D【解析】抛物线焦点在轴上,开口向上,所以焦点坐标为,准线方程为,因为点A的纵坐标为4,所以点A到抛物线准线的距离为,因为抛物线上的点到焦点的距离等于到准线的距离,所以点A与抛物线焦点的距离为5.考点:本小题主要考查应用抛物线定义和抛物线上点的性质抛物线上的点到焦点的距离,考查学生的运算求解能力.点评:抛物线上的点到焦点的距离等于到准线的距离,这条性质在解题时经常用到,可以简化运算.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用复数除法化简,由共轭复数的概念写出即可.【详解】,∴.故答案为:14、【解析】如图,设,两点的抛物线的准线上的射影分别为,,过作的垂线,在三角形中,等于直线的倾斜角,其正切值即为值,利用在直角三角形中,求得,从而得出直线的斜率【详解】解:如图,当在第一象限时,设,两点的抛物线的准线上的射影分别为,,过作的垂线,在三角形中,等于直线的倾斜角,其正切值即为值,由抛物线的定义可知:设,则,,,在直角三角形中,,所以,则直线的斜率;当在第四象限时,同理可得,直线的斜率,综上可得直线l的斜率为;故答案为:15、【解析】求出等比数列的通项公式,可得出的通项公式,推导出数列为等差数列,利用等差数列的求和公式即可得解.【详解】设等比数列的公比为,则,则,所以,,则,所以,数列为等差数列,故数列的前项和为.故答案为:.16、【解析】分离常数,将问题转化求函数最值问题.【详解】任意,恒成立恒成立,故只需,记,,易知,所以.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】设出,由直线的斜率为求得,结合离心率求得,再由隐含条件求得,即可求椭圆方程;(2)点轴时,不合题意;当直线斜率存在时,设直线,联立直线方程和椭圆方程,由判别式大于零求得的范围,再由弦长公式求得,由点到直线的距离公式求得到的距离,代入三角形面积公式,化简后换元,利用基本不等式求得最值,进一步求出值,则直线方程可求.试题解析:(1)设,因为直线的斜率为,所以,.又解得,所以椭圆的方程为.(2)解:设由题意可设直线的方程为:,联立消去得,当,所以,即或时.所以点到直线的距离所以,设,则,,当且仅当,即,解得时取等号,满足所以的面积最大时直线的方程为:或.【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题(2)就是用的这种思路,利用均值不等式法求三角形最值的.18、(1);(2)或.【解析】(1)由离心率公式、将点代入椭圆方程得出椭圆的方程;(2)联立椭圆和直线的方程,由判别式得出的范围,再由韦达定理结合三角形面积公式得出,求出的值得出直线的方程.【详解】解:(1)因为椭圆的离心率为,所以.①又因为椭圆经过点,所以有.②联立①②可得,,,所以椭圆的方程为.(2)由题意可知,直线的斜率存在,设直线的方程为.由消去整理得,.因为直线与椭圆交于不同两点,所以,即,所以设,,则,.由题意得,面积,即.因为的面积为,所以,即.化简得,,即,解得或,均满足,所以或.所以直线的方程为或.【点睛】关键点睛:在第二问中,关键是由韦达定理建立的关系,结合三角形面积公式求出斜率,得出直线的方程.19、(1);(2)或.【解析】(1)由虚轴长是12求出半虚轴b,根据双曲线的性质c2=a2+b2以及离心率,求出a2,写出双曲线的标准方程;(2)设出抛物线方程,利用经过,求出抛物线中的参数,即可得到抛物线方程【详解】焦点在x轴上,设所求双曲线的方程为=1(a>0,b>0)由题意,得解得b=6,解得,所以焦点在x轴上的双曲线的方程为(2)由于点P在第三象限,所以抛物线方程可设为:或(p>0)当方程为,将点代入得16=4p,即p=4,抛物线方程为:;当方程为,将点代入得4=8p,即p=,抛物线方程为:;20、(1)(2)0【解析】(1)由条件得和,再结合可求解;(2)设直线AB的方程为:,与椭圆联立,得到,同理得,再根据题中的条件化简整理可求解.【小问1详解】因为椭圆的离心率为,所以,所以①又因为过且垂直于x轴的直线被椭圆C截得的线段长为1,所以②,由①②可知,所以,,所以椭圆C的方程为【小问2详解】因为点P在直线上,所以设点,由题可知,直线AB的斜率与直线MN的斜率都存在所以直线AB的方程为:,即,直线MN的方程为:,即,设,,,,所以,消去y可得,,整理可得,且所以,,又因为,,所以,同理可得,又因为,所以,又因为,,,都是长度,所以,所以,整理可得,又因为,所以,所以直线AB的斜率与直线MN的斜率之和为021、(1)(2)证明见解析【解析】(1)由已知条件列出关于的方程组,解方程组求出,从而可求出的通项公式,(2)由(1)可得,然后利用等比数列的定义证明即可【小问1详解】设数列的公差为,则由,,得,解得,所以【小问2详解】证明:由(1)得,所以,()所以数列是以9为公比,27为首项的等比数列22、(1)证明见解析(2)【解析】(1)设与交点为,延长交的延长线于点,进而根据证明,再结合底面得,进而证明平面即可证明结论;(2)由得点到平面的距离等于

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论