版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省执信中学、广州二中、广州六中、广雅中学四校2023年数学高二上期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设函数,则()A.1 B.5C. D.02.空气质量指数大小分为五级指数越大说明污染的情况越严重,对人体危害越大,指数范围在:,,,,分别对应“优”、“良”、“轻中度污染”、“中度重污染”、“重污染”五个等级,如图是某市连续14天的空气质量指数趋势图,下面说法错误的是().A.这14天中有4天空气质量指数为“良”B.从2日到5日空气质量越来越差C.这14天中空气质量的中位数是103D.连续三天中空气质量指数方差最小是9日到11日3.把点随机投入长为,宽为的矩形内,则点与矩形四边的距离均不小于的概率为()A. B.C. D.4.命题“,则”及其逆命题、否命题和逆否命题这四个命题中,真命题的个数为()A.0 B.2C.3 D.45.已知四棱柱ABCD-A1B1C1D1的底面是边长为2的正方形,侧棱与底面垂直,若点C到平面AB1D1的距离为,则直线与平面所成角的余弦值为()A. B.C. D.6.命题“,”的否定是()A., B.,C., D.,7.函数在定义域上是增函数,则实数m的取值范围为()A. B.C. D.8.已知圆与圆,则圆M与圆N的位置关系是()A.内含 B.相交C.外切 D.外离9.已知角的顶点与坐标原点重合,始边与x轴的非负半轴重合,角终边上有一点(1,2),为锐角,且,则()A.-18 B.-6C. D.10.阿基米德(公元前287年~公元前212年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到的椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆的对称轴为坐标轴,焦点在轴上,且椭圆的离心率为,面积为,则椭圆的标准方程为()A. B.C. D.11.某家大型超市近10天的日客流量(单位:千人次)分别为:2.5、2.8、4.4、3.6.下列图形中不利于描述这些数据的是()A.散点图 B.条形图C.茎叶图 D.扇形图12.2021年6月17日9时22分,搭载神舟十二号载人飞船的长征二号F遥十二运载火箭,在酒泉卫星发射中心点火发射.此后,神舟十二号载人飞船与火箭成功分离,进入预定轨道,并快速完成与“天和”核心舱的对接,聂海胜、刘伯明、汤洪波3名宇航员成为核心舱首批“入住人员”,并在轨驻留3个月,开展舱外维修维护,设备更换,科学应用载荷等一系列操作.已知神舟十二号飞船的运行轨道是以地心为焦点的椭圆,设地球半径为R,其近地点与地面的距离大约是,远地点与地面的距离大约是,则该运行轨道(椭圆)的离心率大约是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.容积为V圆柱形密封金属饮料罐,它的高与底面半径比值为___________时用料最省.14.已知点,为抛物线:上不同于原点的两点,且,则的面积的最小值为__________.15.已知正项等比数列的前n项和为,且,则的最小值为_________16.在某项测量中,测量结果ξ服从正态分布(),若ξ在内取值的概率为0.4,则ξ在内取值的概率为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆C:的离心率为,点和点都在椭圆C上,直线PA交x轴于点M(1)求椭圆C的方程,并求点M的坐标(用m,n表示);(2)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N,问:y轴上是否存在点Q(不与O重合),使得?若存在,求点Q的坐标,若不存在,说明理由18.(12分)如图,在四棱锥中,,为的中点,连接.(1)求证:平面;(2)求平面与平面的夹角的余弦值.19.(12分)已知向量,.(1)计算和;(2)求.20.(12分)已知等差数列满足,.(1)求的通项公式;(2)设,求数列的前项和.21.(12分)已知椭圆与直线相切,点G为椭圆上任意一点,,,且的最大值为3(1)求椭圆C的标准方程;(2)设直线与椭圆C交于不同两点E,F,点O为坐标原点,且,当的面积取最大值时,求的取值范围22.(10分)已知椭圆:经过点为,且.(1)求椭圆的方程;(2)若直线与椭圆相切于点,与直线相交于点.已知点,且,求此时的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由题意结合导数的运算可得,再由导数的概念即可得解.【详解】由题意,所以,所以原式等于.故选:B.2、C【解析】根据题图分析数据,对选项逐一判断【详解】对于A,14天中有1,3,12,13共4日空气质量指数为“良”,故A正确对于B,从2日到5日空气质量指数越来越高,故空气质量越来越差,故B正确对于C,14个数据中位数为:,故C错误对于D,观察折线图可知D正确故选:C3、A【解析】确定矩形四边的距离均不小于的点构成的区域,由几何概型面积型的公式计算可得结果.【详解】若点与矩形四边的距离均不小于,则其落在如图所示的阴影区域内,所求概率.故选:A.4、D【解析】首先判断原命题的真假,写出其逆命题,即可判断其真假,再根据互为逆否命题的两个命题同真假,即可判断;【详解】解:因为命题“,则”为真命题,所以其逆否命题也为真命题;其逆命题为:则,显然也为真命题,故其否命题也为真命题;故命题“,则”及其逆命题、否命题和逆否命题这四个命题中,真命题有4个;故选:D5、A【解析】先由等面积法求得的长,再以为坐标原点,建立如图所示的空间直角坐标系,运用线面角的向量求解方法可得答案【详解】如图,连接交于点,过点作于,则平面,则,设,则,则根据三角形面积得,代入解得以为坐标原点,建立如图所示的空间直角坐标系则,,设平面的法向量为,,,则,即,令,得,所以直线与平面所成的角的余弦值为,故选:6、D【解析】根据含一个量词的命题的否定方法:修改量词,否定结论,直接得到结果.【详解】命题“,”的否定是“,”.故选:D7、A【解析】根据导数与单调性的关系即可求出【详解】依题可知,在上恒成立,即在上恒成立,所以故选:A8、B【解析】将两圆方程化为标准方程形式,计算圆心距,和两圆半径的和差比较,可得答案,【详解】圆,即,圆心,圆,即,圆心,则故有,所以两圆是相交的关系,故选:B9、A【解析】由终边上的点可得,由同角三角函数的平方、商数关系有,再应用差角、倍角正切公式即可求.【详解】由题设,,,则,又,,所以.故选:A10、C【解析】由题意,设出椭圆的标准方程为,然后根据椭圆的离心率以及椭圆面积列出关于的方程组,求解方程组即可得答案【详解】由题意,设椭圆的方程为,由椭圆的离心率为,面积为,∴,解得,∴椭圆的方程为,故选:C.11、A【解析】根据数据的特征以及各统计图表的特征分析即可;【详解】解:茎叶图、条形图、扇形图均能将数据描述出来,并且能够体现出数据的变化趋势;散点图表示因变量随自变量而变化的大致趋势,故用来描述该超市近10天的日客流量不是很合适;故选:A12、A【解析】以运行轨道长轴所在直线为x轴,地心F为右焦点建立平面直角坐标系,设椭圆方程为,根据题意列出方程组,解方程组即可.【详解】以运行轨道长轴所在直线为x轴,地心F为右焦点建立平面直角坐标系,设椭圆方程为,其中,根据题意有,,所以,,所以椭圆的离心率故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设圆柱的底面半径为,高为,容积为,由,得到,进而求得表面积,结合不等式,即可求解.【详解】设圆柱的底面半径为,高为,容积为,则,即有,可得圆柱的表面积为,当且仅当时,即时最小,即用料最省,此时,可得.故答案为:.14、【解析】设,,利用可得即可求得,利用两点间距离公式求出、,面积,利用基本不等式即可求最值.【详解】设,,由可得,解得:,,,,,所以,当且仅当时等号成立,所以的面积的最小值为,故答案为:.【点睛】关键点点睛:本题解题的关键点是设,坐标,采用设而不求的方法,将转化为,求出参数之间的关系,再利用基本不等式求的最值.15、16【解析】根据是等比数列,由,即可得也是等比数列,结合基本不等式的性质即可求出的最小值.【详解】是等比数列,,即,也是等比数列,且,,可得:,当且仅当时取等号,的最小值为16.故答案为:1616、4##【解析】根据正态分布曲线的对称性求解【详解】因为ξ服从正态分布(),即正态分布曲线的对称轴为,根据正态分布曲线的对称性,可知ξ在与取值的概率相同,所以ξ在内取值的概率为0.4.故答案为:0.4三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2)存在或,使得,理由见解析.【解析】(1)根据离心率,及求出,,进而得到椭圆方程及用m,n表示点M的坐标;(2)假设存在,根据得到,表达出点坐标,得到,结合得到,从而求出答案.【小问1详解】由离心率可知:,又,,解得:,,故椭圆C:,直线PA为:,令得:,所以;【小问2详解】存在或,使得,理由如下:假设,使得,则,其中,直线:,令得:,则,,解得:,其中,故,所以,所以或18、(1)证明过程见解析;(2).【解析】(1)根据平行四边形的判定定理和性质,结合线面垂直的判定定理进行证明即可;(2)利用空间向量夹角公式进行求解即可.【小问1详解】因为为的中点,所以,而,所以四边形是平行四边形,因此,因为,,为的中点,所以,,而,因为,所以,而平面,所以平面;【小问2详解】根据(1),建立如图所示的空间直角坐标系,,于是有:,则平面的法向量为:,设平面的法向量为:,所以,设平面与平面的夹角为,所以.19、(1),;(2).【解析】(1)利用空间向量的坐标运算可求得的坐标,利用向量的模长公式可求得的值;(2)计算出,结合的取值范围可求得结果.【详解】(1),;(2),,因此,.【点睛】本题考查空间向量的坐标运算,同时也考查了利用空间向量的数量积计算向量的夹角,考查计算能力,属于基础题.20、(1);(2).【解析】(1)设等差数列的公差为,根据题意可得出关于、的方程组,解出这两个量的值,可得出数列的通项公式;(2)求得,利用裂项法可求得.【小问1详解】解:设等差数列的公差为,则,可得,由可得,即,解得,,故.【小问2详解】解:,因此,.21、(1)(2)【解析】(1)设点,根据题意,得到,根据向量数量积的坐标表示,得到,根据其最小值,求出,即可得出椭圆方程;(2)设,,,联立直线与椭圆方程,根据韦达定理,由弦长公式,以及点到直线距离公式,求出的面积的最值,得到;得出点的轨迹为椭圆,且点为椭圆的左、右焦点,记,则,得到,根据对勾函数求出最值.【小问1详解】设点,由题意知,所以:,则,当时,取得最大值,即,故椭圆C的标准方程是【小问2详解】设,,,则由得,,点O到直线l的距离
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度建设工程合同
- 纸币清洗机器市场发展预测和趋势分析
- 牙桥材料市场需求与消费特点分析
- 2024年度版权许可合同协议
- 贵金属制钢笔市场发展预测和趋势分析
- 2024年度污水处理设备采购与运营合同
- 2024年度招标办公室信息化建设项目合同
- 蜂窝纸市场需求与消费特点分析
- 照相用回光灯市场需求与消费特点分析
- 2024年度海外房产购置咨询合同
- 脑出血研究现状与展望课件
- 高速铁道工程职业生涯规划书
- +Unit7++SectionB+2a-2e 人教版英语九年级全册
- 2023年安徽省普通高中学业水平合格性考试地理含答案
- 手术后气胸的护理课件
- 组织文化与领导力 详解报告
- 德能勤绩廉量化评分表
- 大学英语四级阅读理解精读100篇
- 口腔科6s管理标签大全
- 北京市海淀区2022-2023学年五年级上学期期末测试语文试卷
- 大班-数学-加号减号-课件(基础版)
评论
0/150
提交评论