2024届四川省绵阳市高二上数学期末学业水平测试模拟试题含解析_第1页
2024届四川省绵阳市高二上数学期末学业水平测试模拟试题含解析_第2页
2024届四川省绵阳市高二上数学期末学业水平测试模拟试题含解析_第3页
2024届四川省绵阳市高二上数学期末学业水平测试模拟试题含解析_第4页
2024届四川省绵阳市高二上数学期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届四川省绵阳市高二上数学期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中国共产党建党100周年之际,广安市某中学组织了“党史知识竞赛”活动,已知该校共有高中学生1000人,用分层抽样的方法从该校高中学生中抽取一个容量为25的样本参加活动,其中高二年级抽取了8人,则该校高二年级学生人数为()A.960 B.720C.640 D.3202.椭圆的焦点为、,上顶点为,若,则()A B.C. D.3.设P是双曲线上的点,若,是双曲线的两个焦点,则()A.4 B.5C.8 D.104.已知一个圆锥的体积为,任取该圆锥的两条母线a,b,若a,b所成角的最大值为,则该圆锥的侧面积为()A. B.C. D.5.已知是两条不同的直线,是两个不同的平面,则下列结论正确的是()A.若,则 B.若,则C若,则 D.若,则6.已知圆上有三个点到直线的距离等于1,则的值为()A. B.C. D.17.设函数在定义域内可导,的图像如图所示,则导函数的图象可能为()A. B.C. D.8.设是可导函数,当,则()A.2 B.C. D.9.已知直三棱柱中,,,,则异面直线与所成角的余弦值为()A. B.C. D.10.给出下列判断,其中正确的是()A.三点唯一确定一个平面B.一条直线和一个点唯一确定一个平面C.两条平行直线与同一条直线相交,三条直线在同一平面内D.空间两两相交的三条直线在同一平面内11.已知双曲线的离心率为,则的渐近线方程为A. B.C. D.12.已知双曲线C:(,)的一条渐近线被圆所截得的弦长为2,的C的离心率为()A. B.C.2 D.二、填空题:本题共4小题,每小题5分,共20分。13.在数列中,,,则___________.14.设,,,则动点P的轨迹方程为______,P到坐标原点的距离的最小值为______15.已知曲线,则以下结论正确的是______.①曲线C关于点对称;②曲线C关于y轴对称;③曲线C被x轴所截得的弦长为2;④曲线C上的点到原点距离都不超过2.16.已知数列满足,,若为等差数列,则___________,若,则数列的前项和为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知为各项均为正数的等比数列,且,.(1)求数列的通项公式;(2)令,求数列前n项和.18.(12分)已知函数.(1)当时,求的极值;(2)设函数,,,求证:.19.(12分)为了解某城中村居民收入情况,小明利用周末时间对该地在岗居民月收入进行了抽样调查,并将调查数据整理得到如下频率分布直方图:根据直方图估算:(1)在该地随机调查一位在岗居民,该居民收入在区间内的概率;(2)该地区在岗居民月收入的平均数和中位数;20.(12分)设函数(1)若曲线在点处的切线方程为,求;(2)求函数的单调区间21.(12分)设为数列的前n项和,且满足(1)求证:数列为等差数列;(2)若,且成等比数列,求数列的前项和22.(10分)甲乙两人轮流投篮,每人每次投一球,约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束,设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响(1)求甲乙各投球一次,比赛结束的概率;(2)求甲获胜的概率

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由分层抽样各层成比例计算即可【详解】设高二年级学生人数为,则,解得故选:D2、C【解析】分析出为等边三角形,可得出,进而可得出关于的等式,即可解得的值.【详解】在椭圆中,,,,如下图所示:因为椭圆的上顶点为点,焦点为、,所以,,为等边三角形,则,即,因此,.故选:C.3、C【解析】根据双曲线的定义可得:,结合双曲线的方程可得答案.【详解】由双曲线可得根据双曲线的定义可得:故选:C4、B【解析】设圆锥的母线长为R,底面半径长为r,由题可知圆锥的轴截面是等边三角形,根据体积公式计算可得,利用扇形的面积公式计算即可求得结果.【详解】如图,设圆锥的母线长为R,底面半径长为r,由题可知圆锥的轴截面是等边三角形,所以,圆锥的体积,解得,所以该圆锥的侧面积为.故选:B5、C【解析】由空间中直线与直线、直线与平面、平面与平面的位置关系,逐一核对四个选项得答案【详解】解:对于A:若,则或,故A错误;对于B:若,则或与相交,故B错误;对于C:若,根据面面垂直的判定定理可得,故C正确;对于D:若则与平行、相交、或异面,故D错误;故选:C6、A【解析】求出圆心和半径,由题意可得圆心到直线的距离,列方程即可求得的值.【详解】由圆可得圆心,半径,因为圆上有三个点到直线的距离等于1,所以圆心到直线的距离,可得:,故选:A.7、D【解析】根据函数的单调性得到导数的正负,从而得到函数的图象.【详解】由函数的图象可知,当时,单调递增,则,所以A选项和C选项错误;当时,先增,再减,然后再增,则先正,再负,然后再正,所以B选项错误.故选:D.【点睛】本题主要考查函数的单调性和导数的关系,意在考查学生对该知识的掌握水平,属于基础题.一般地,函数在某个区间可导,,则在这个区间是增函数;函数在某个区间可导,,则在这个区间是减函数.8、C【解析】由导数的定义可得,即可得答案【详解】根据题意,,故.故选:C9、C【解析】作出辅助线,找到异面直线与所成角,进而利用余弦定理及勾股定理求出各边长,最后利用余弦定理求出余弦值.【详解】如图所示,把三棱柱补成四棱柱,异面直线与所成角为,由勾股定理得:,,∴故选:C10、C【解析】根据确定平面的条件可对每一个选项进行判断.【详解】对A,如果三点在同一条直线上,则不能确定一个平面,故A错误;对B,如果这个点在这条直线上,就不能确定一个平面,故B错误;对C,两条平行直线确定一个平面,一条直线与这两条平行直线都相交,则这条直线就在这两条平行直线确定的一个平面内,故这三条直线在同一平面内,C正确;对D,空间两两相交的三条直线可确定一个平面,也可确定三个平面,故D错误.故选:C11、C【解析】,故,即,故渐近线方程为.【考点】本题考查双曲线的基本性质,考查学生的化归与转化能力.12、C【解析】由双曲线的方程可得渐近线的直线方程,根据直线和圆相交弦长可得圆心到直线的距离,进而可得,结合,可得离心率.【详解】双曲线的一条渐近线方程为,即,被圆所截得的弦长为2,所以圆心到直线的距离为,,解得,故选:C【点睛】本题考查了双曲线的渐近线和离心率、直线和圆的相交弦、点到直线距离等基本知识,考查了运算求解能力和逻辑推理能力,转化的数学思想,属于一般题目.二、填空题:本题共4小题,每小题5分,共20分。13、##.【解析】由递推关系取可求,再取求,取求.详解】由分别取,2,3可得,,,又,∴,,,故答案为:.14、①.②.l【解析】根据双曲线的定义得到动点的轨迹方程,从而求出到坐标原点的距离的最小值;【详解】解:因为,所以动点P的轨迹为以A,B为焦点,实轴长为2的双曲线的下支.因为,,所以,,,所以动点P的轨迹方程为故P到坐标原点的距离的最小值为故答案为:;;15、②④【解析】将x换成,将y换成,若方程不变则关于原点对称;将x换成,曲线的方程不变则关于y轴对称;令通过解方程即可求得被x轴所截得的弦长;利用基本不等式即可判断出曲线C上y轴右侧的点到原点距离是否不超过2,根据曲线C关于y轴对称,即可判断出曲线C上的点到原点距离是否都不超过2.【详解】对于①,将x换成,将y换成,方程改变,则曲线C关于点不对称,故①错误;对于②,将x换成,曲线的方程不变,则曲线C关于y轴对称,故②正确;对于③,令得,,解得,即曲线C与x轴的交点为和,则曲线C被x轴所截得的弦长为,故③错误;对于④,当时,,可得,当且仅当时取等号,即,则,即曲线C上y轴右侧的点到原点的距离都不超过2,此曲线关于y轴对称,即曲线C上y轴左侧的点到原点的距离也不超过2,故④正确;故答案为:②④.16、①.##②.【解析】利用递推关系式,结合等差数列通项公式可求得公差,进而得到;利用递推关系式可知数列的奇数项和偶数项分别成等差数列,采用裂项相消的方法可求得前项和.【详解】由得:,解得:;为等差数列,设其公差为,则,解得:,;由知:数列的奇数项是以为首项,为公差的等差数列;偶数项是以为首项,为公差的等差数列;,又,,数列的前项和,.故答案为:;.【点睛】关键点点睛:本题考查根据数列递推关系求解数列中的项、裂项相消法求和的问题;解题关键是能够根据递推关系式得到数列的奇数项和偶数项分别成等差数列,由此可通过裂项相消的方法求得所求数列的和.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)先通过等比数列的基本量运算求出公比,进而求出通项公式;(2)结合(1)求出,然后根据错位相减法求得答案.【小问1详解】设等比数列公比为q,,,,(负值舍去),所以.【小问2详解】,,所以,解得:.18、(1),无极大值(2)证明见解析【解析】(1)求出函数的导数,判断函数的单调性,进而确定极值点,求得答案;(2)将要证明的不等式变形为,然后构造函数,利用导数判断其单调性,求其最值,进而证明结论.【小问1详解】当时,,,由得,列表得:1--0+减减极小值增由上表可知,无极大值.;【小问2详解】证明:,即证;∵,则,故只需证,即证令,,得,得,∴在上递增,在上递减∴,∴,∴.19、(1)(2)平均数为;中位数为.【解析】(1)直接根据概率和为1计算得到答案.(2)根据平均数和中位数的定义直接计算得到答案.【小问1详解】该居民收入在区间内的概率为:【小问2详解】居民月收入的平均数为:.第一组概率为,第二组概率为,第三组概率为,设居民月收入的中位数为,则,解得.20、(1)(2)答案见解析【解析】(1)求出,建立方程关系,即可求出结论;(2)对分类讨论,求出的单调区间.【小问1详解】由于切点在切线上,所以,函数通过点又,根据导数几何意义,;【小问2详解】由可知当时,则;当时,则;当时,的单调递减区间为,单调递增区间为当时,单调递增区间为,单调递减区间为.21、(1)证明见解析;(2)答案见解析.【解析】(1)利用给定的递推公式,结合“当时,”变形,再利用等差中项的定义推理作答.(2)利用(1)的结论,利用等比中项的定义列式计算,再利用等差数列前n项和公式计算作答.【小问1详解】依题意,,当时,有,两式相减得:,同理可得,于是得,即,而当时,,所以数列为等差数列.【小问2详解】由(1)知数列为等差数列,设其首项为,公差为d,依题意,,解得或,当时,,当时,.22、(1)(2)【解析】(1)设事件“甲在第次投篮投中”,设事

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论