2024届浙江省安吉县上墅私立高级中学数学高二上期末统考模拟试题含解析_第1页
2024届浙江省安吉县上墅私立高级中学数学高二上期末统考模拟试题含解析_第2页
2024届浙江省安吉县上墅私立高级中学数学高二上期末统考模拟试题含解析_第3页
2024届浙江省安吉县上墅私立高级中学数学高二上期末统考模拟试题含解析_第4页
2024届浙江省安吉县上墅私立高级中学数学高二上期末统考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江省安吉县上墅私立高级中学数学高二上期末统考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,则下列说法错误的是()A.若,分别是直线,的方向向量,则直线,所成的角的余弦值是B.若,分别是直线l的方向向量与平面的法向量,则直线l与平面所成的角的正弦值是C.若,分别是平面,的法向量,则平面,所成的角的余弦值是D.若,分别是直线l的方向向量与平面的法向量,则直线l与平面所成的角的正弦值是2.以,为焦点,且经过点的椭圆的标准方程为()A. B.C. D.3.在空间直角坐标系中,若,,则点B的坐标为()A.(3,1,﹣2) B.(-3,1,2)C.(-3,1,-2) D.(3,-1,2)4.已知直线的倾斜角为,在轴上的截距为,则此直线的方程为()A. B.C. D.5.圆与直线的位置关系是()A.相交 B.相切C.相离 D.不能确定6.(5分)已知集合A={x|−2<x<4},集合B={x|(x−6)(x+1)<0},则A∩B=A.{x|1<x<4} B.{x|x<4或x>6}C.{x|−2<x<−1} D.{x|−1<x<4}7.椭圆的离心率为()A B.C. D.8.设为坐标原点,抛物线的焦点为,为抛物线上一点.若,则的面积为()A. B.C. D.9.在中,角A,B,C所对的边分别为a,b,c,,,则()A. B.1C.2 D.410.若复数满足,则复数对应的点的轨迹围成图形的面积等于()A. B.C. D.11.圆与圆的位置关系为()A.内切 B.相交C.外切 D.相离12.某四面体的三视图如图所示,该四面体的体积为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线的准线方程为,则________14.已知正方形的边长为2,对部分以为轴进行翻折,翻折到,使二面角的平面角为直二面角,则___________.15.已知点P是抛物线上的一个动点,则点P到点M(0,2)的距离与点P到该抛物线准线的距离之和的最小值为______________16.已知等比数列满足,则_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行横道时,应当减速慢行;遇行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”,其中第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员不“礼让斑马线”行为统计数据:参考公式:,月份12345违章驾驶员人数1201051009580(1)请利用所给数据求违章人数y与月份x之间的回归直线方程;(2)预测该路口10月份的不“礼让斑马线”违章驾驶员人数;18.(12分)如图所示,在长方体ABCD-A1B1C1D1中,E,F分别是AB,A1C的中点,AD=AA1=2,AB=(1)求证:EF∥平面ADD1A1;(2)求平面EFD与平面DEC的夹角的余弦值;(3)在线段A1D1上是否存在点M,使得BM⊥平面EFD?若存在,求出的值;若不存在,请说明理由19.(12分)为了符合国家制定的工业废气排放标准,某工厂在国家科研部门的支持下,进行技术攻关,采用新工艺,对其排放的废气中的二氧化硫转化为一种可利用的化工产品.已知该工厂每月的处理量最少为300吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为,且每处理一吨二氧化硫得到可利用的化工产品价值为200元(1)该工厂每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该工厂每月能否获利?如果获利,求出最大利润:如果不获利,则国家每月至少应补贴多少元才能使工厂不亏损?20.(12分)已知椭圆的左焦点为F,右顶点为,M是椭圆上一点.轴且(1)求椭圆C的标准方程;(2)直线与椭圆C交于E,H两点,点G在椭圆C上,且四边形平行四边形(其中O为坐标原点),求21.(12分)等差数列中,首项,且成等比数列(1)求数列的通项公式;(2)求数列的前项和22.(10分)在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的直角坐标方程;(2)若与相交于A、两点,设,求.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用空间角的意义结合空间向量求空间角的方法逐一分析各选项即可判断作答.【详解】对于A,因分别是直线的方向向量,且,直线所成的角为,则,A正确;对于B,D,因分别是直线l的方向向量与平面的法向量,且,直线l与平面所成的角为,则有,B正确,D错误;对于C,因分别是平面的法向量,且,平面所成的角为,则不大于,,C正确.故选:D2、B【解析】根据焦点在x轴上,c=1,且过点,用排除法可得.也可待定系数法求解,或根据椭圆定义求2a可得.【详解】因为焦点在x轴上,所以C不正确;又因为c=1,故排除D;将代入得,故A错误,所以选B.故选:B3、C【解析】利用点的坐标表示向量坐标,即可求解.【详解】设,,,所以,,,解得:,,,即.故选:C4、D【解析】求出直线的斜率,利用斜截式可得出直线的方程.【详解】直线的斜率为,由题意可知,所求直线的方程为.故选:D.5、B【解析】用圆心到直线的距离与半径的大小判断【详解】解:圆的圆心到直线的距离,等于圆的半径,所以圆与直线相切,故选:B6、D【解析】由(x−6)(x+1)<0,得−1<x<6,从而有B={x|−1<x<6},所以A∩B={x|−1<x<4},故选D7、D【解析】根据椭圆方程先写出标准方程,然后根据标准方程写出便可得到离心率.【详解】解:由题意得:,,故选:D8、D【解析】先由抛物线方程求出点的坐标,准线方程为,再由可求得点的横坐标为4,从而可求出点的纵坐标,进而可求出的面积【详解】由题意可得点的坐标,准线方程为,因为为抛物线上一点,,所以点的横坐标为4,当时,,所以,所以的面积为,故选:D9、C【解析】直接运用正弦定理可得,解得详解】由正弦定理,得,所以故选:C10、D【解析】利用复数的几何意义,即可判断轨迹图形,再求面积.【详解】复数满足,表示复数对应的点的轨迹是以点为圆心,半径为3的圆,所以围成图形的面积等于.故选:D11、C【解析】写出两圆的圆心和半径,求出圆心距,发现与两圆的半径和相等,所以判断两圆外切【详解】圆的标准方程为:,所以圆心坐标为,半径;圆的圆心为,半径,圆心距,所以两圆相外切故选:C12、A【解析】可由三视图还原原几何体,然后根据题意的边角关系,完成体积的求解.【详解】由三视图还原原几何体如图:其中平面,,则该四面体的体积为.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由准线方程的表达式构建方程,求得答案.【详解】因为准线方程为,所以故答案为:4【点睛】本题考查抛物线中准线的方程表示,属于基础题.14、-2【解析】根据,则,根据条件求得向量夹角即可求得结果.【详解】由题知,,取的中点O,连接,如图所示,则,又二面角的平面角为直二面角,则,又,则,为等边三角形,从而,则,故答案为:-215、【解析】由抛物线的定义得:,所以,当三点共线时,最小可得答案.【详解】如图所示:,由抛物线的定义得:,所以,由图象知:当三点共线时,最小,.故答案为:.16、84【解析】设公比为q,求出,再由通项公式代入可得结论【详解】设公比为q,则,解得所以故答案为:84三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)37【解析】(1)将题干数据代入公式求出与,进而求出回归直线方程;(2)再第一问的基础上代入求出结果.【小问1详解】,,则,,所以回归直线方程;【小问2详解】令得:,故该路口10月份的不“礼让斑马线”违章驾驶员人数为37.18、(1)证明见解析;(2);(3)不存在;理由见解析【解析】(1)连接AD1,A1D,交于点O,所以点O是A1D的中点,连接FO,根据判定定理证明四边形AEFO是平行四边形,进而得到线面平行;(2)建立坐标系,求出两个面的法向量,求得两个法向量的夹角的余弦值,进而得到二面角的夹角的余弦值;(3)假设在线段A1D1上存在一点M,使得BM⊥平面EFD,设出点M的坐标,由第二问得到平面EFD的一个法向量,判断出和该法向量不平行,故不存在满足题意的点M.【详解】(1)证明:连接AD1,A1D,交于点O,所以点O是A1D的中点,连接FO因为F是A1C的中点,所以OF∥CD,OF=CD因AE∥CD,AE=CD,所以OF∥AE,OF=AE所以四边形AEFO是平行四边形所以EF∥AO因为EF⊄平面ADD1A1,AO⊂平面ADD1A1,所以EF∥平面ADD1A1(2)以点A为坐标原点,直线AB,AD,AA1分别为x轴,y轴,z轴建立空间直角坐标系,因为点E,F分别是AB,A1C的中点,AD=AA1=2,AB=,所以B(,0,0),D(0,2,0),E,F所以=,=(0,1,1)设平面EFD的法向量为,则即令y=1,则z=-1,x=2所以,由题知,平面DEC的一个法向量为m=(0,0,1),所以cos<,>==所以平面EFD与平面DEC的夹角的余弦值是(3)假设在线段A1D1上存在一点M,使得BM⊥平面EFD设点M的坐标为(0,t,2)(0≤t≤2),则=(,t,2)因为平面EFD的一个法向量为,而与不平行,所以在线段A1D1上不存在点M,使得BM⊥平面EFD19、(1)600吨(2)该工厂不获利,且需要国家每月至少补贴52500元才能使工厂不亏损【解析】(1)设该工厂每吨平均处理成本为z,,利用基本不等式求最值可得答案;(2)设该工厂每月的利润为,利用配方求最值可得答案.【小问1详解】设该工厂每吨平均处理成本为z,,∴,当且仅当,即时取等号,当时,每吨平均处理成本最低.【小问2详解】设该工厂每月的利润为,则,∴,当时,,所以该工厂不获利,且需要国家每月至少补贴52500元才能使工厂不亏损.20、(1)(2)【解析】(1)根据椭圆的简单几何性质即可求出;(2)设,联立与椭圆方程,求出,再根据平行四边形的性质求出点的坐标,然后由点G在椭圆C上,可求出,从而可得【小问1详解】∵椭圆C的右顶点为,∴,∵轴,且,∴,∴,所以椭圆C的标准方程为【小问2详解】设,将直线代入,消去y并整理得,由,得.(*)由根与系数的关系可得,∴,∵四边形为平行四边形,∴,得,将G点坐标代人椭圆C的方程得,满足(*)式∴21、(1)(2)【解析】(1)根据等比中项的性质结合等差数列的通项公式求出,进而得出数列的通项公式;(2)根据裂项相消求和法得出前项和为和.【小问1详解】因为成等比数列,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论