版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届新疆伊犁市奎屯市第一高级中学高二上数学期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,分别是双曲线:的左、右焦点,过点作的一条渐近线的垂线,垂足为,,为坐标原点,则双曲线的离心率为()A. B.2C. D.2.在单调递减的等比数列中,若,,则()A.9 B.3C. D.3.已知命题p:,,则()A., B.,C., D.,4.圆与圆的位置关系为()A.内切 B.相交C.外切 D.外离5.下列结论正确的个数为()①若,则;②若,则;③若,则;④若,则A.4 B.3C.2 D.16.设,直线与直线平行,则()A. B.C. D.7.如图所示,直三棱柱中,,,分别是,的中点,,则与所成角的余弦值为()A. B.C. D.8.在数列中,,,则()A. B.C. D.9.椭圆C:的焦点在x轴上,其离心率为则椭圆C的长轴长为()A.2 B.C.4 D.810.双曲线的光学性质为:如图①,从双曲线右焦点发出的光线经双曲线镜面反射,反射光线的反向延长线经过左焦点.我国首先研制成功的“双曲线新闻灯”,就是利用了双曲线的这个光学性质.某“双曲线新闻灯”的轴截面是双曲线的一部分,如图②,其方程为,为其左、右焦点,若从右焦点发出的光线经双曲线上的点和点反射后,满足,,则该双曲线的离心率为()A. B.C. D.11.已知平面直角坐标系内一动点P,满足圆上存在一点Q使得,则所有满足条件的点P构成图形的面积为()A. B.C. D.12.在如图所示的茎叶图中,若甲组数据的众数为16,则乙组数据的平均数为()A.12 B.10C.8 D.6二、填空题:本题共4小题,每小题5分,共20分。13.为增强广大师生生态文明意识,大力推进国家森林城市建设创建进程,某班26名同学在一段直线公路一侧植树,每人植一棵(各自挖坑种植),相邻两棵树相距均为10米,在同学们挖坑期间,运到的树苗集中放置在了某一树坑旁边,然后每位同学挖好自己的树坑后,均从各自树坑出发去领取树苗.记26位同学领取树苗往返所走的路程总和为,则的最小值为______米14.已知抛物线C:y2=2px(p>0)上的点P(1,y0)(y0>0)到焦点的距离为2,则p=__15.在等差数列中,前n项和记作,若,则______16.机动车驾驶考试是为了获得机动车驾驶证的考试,采用全国统一的考试科目内容及合格标准,包括科目一理论考试、科目二场地驾驶技能考试、科目三道路驾驶技能考试和科目四安全文明常识考试共四项考试,考生应依次参加四项考试,前一项考试合格后才能报名参加后一项考试,考试不合格则需另行交费预约再次补考.据公安部门通报,佛山市四项考试的合格率依次为,,,,且各项考试是否通过互不影响,则一位佛山公民通过驾考四项考试至多需要补考一次的概率为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,曲线C的参数方程为,(为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.(1)写出曲线C的极坐标方程;(2)已知直线与曲线C相交于A,B两点,求.18.(12分)如图1,在边长为2的菱形ABCD中,∠BAD=60°,将△BCD沿对角线BD折起到△BDC′的位置,如图2所示,并使得平面BDC′⊥平面ABD,E是BD的中点,FA⊥平面ABD,且FA=.图1图2(1)求平面FBC′与平面FBA夹角的余弦值;(2)在线段AD上是否存在一点M,使得⊥平面?若存在,求的值;若不存在,说明理由.19.(12分)已知点F为抛物线:()的焦点,点在抛物线上且在x轴上方,.(1)求抛物线的方程;(2)已知直线与曲线交于A,B两点(点A,B与点P不重合),直线PA与x轴、y轴分别交于C、D两点,直线PB与x轴、y轴分别交于M、N两点,当四边形CDMN的面积最小时,求直线l的方程.20.(12分)已知函数(1)讨论的单调性:(2)若对恒成立,求的取值范围21.(12分)已知双曲线的一条渐近线方程为,且双曲线C过点.(1)求双曲线C的标准方程;(2)过点M的直线与双曲线C的左右支分别交于A、B两点,是否存在直线AB,使得成立,若存在,求出直线AB的方程;若不存在,请说明理由.22.(10分)如图,在四面体ABCD中,,平面ABC,点M为棱AB的中点,,(1)证明:;(2)求平面BCD和平面DCM夹角的余弦值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】先求过右焦点且与渐近线垂直的直线方程,与渐近线方程联立求点P的坐标,再用两点间的距离公式,结合已知条件,得到关于a,c的关系式.【详解】双曲线的左右焦点分别为、,一条渐近线方程为,过与这条渐近线垂直的直线方程为,由,得到点P的坐标为,又因为,所以,所以,所以.故选:D2、A【解析】利用等比数列的通项公式可得,结合条件即求.【详解】设等比数列的公比为,则由,,得,解得或,又单调递减,故,.故选:A.3、C【解析】由全称命题的否定:将任意改存在并否定结论,即可写出原命题p的否定.【详解】由全称命题的否定为特称命题,∴是“,”.故选:C.4、C【解析】将圆的一般方程化为标准方程,根据圆心距和半径的关系,判断两圆的位置关系.【详解】圆的标准方程为,圆的标准方程为,两圆的圆心距为,即圆心距等于两圆半径之和,故两圆外切,故选:C.5、D【解析】根据常数函数的导数为0,可判断①;根据幂函数的求导公式,可判断②;根据指数函数以及对数函数的求导公式,可判断③④.【详解】由得:,故①错误;对于,,故,故②正确;对于,则,故③错误;对于,则,故④错误,故选:D6、C【解析】根据直线平行求解即可.【详解】因为直线与直线平行,所以,即,经检验,满足题意.故选:C7、A【解析】取的中点为,的中点为,然后可得或其补角即为与所成角,然后在中求出答案即可.【详解】取的中点为,的中点为,,,所以或其补角即为与所成角,设,则,,在,,故选:A8、A【解析】根据已知条件,利用累加法得到的通项公式,从而得到.【详解】由,得,所以,所以.故选:A.9、C【解析】根据椭圆的离心率,即可求出,进而求出长轴长.【详解】由椭圆的性质可知,椭圆的离心率为,则,即所以椭圆C的长轴长为故选:C.【点睛】本题主要考查了椭圆的几何性质,属于基础题.10、C【解析】连接,已知条件为,,设,由双曲线定义表示出,用已知正切值求出,再由双曲线定义得,这样可由勾股定理求出(用表示),然后在中,应用勾股定理得出的关系,求得离心率【详解】易知共线,共线,如图,设,,则,由得,,又,所以,,所以,所以,由得,因为,故解得,则,在中,,即,所以故选:C11、D【解析】先找临界情况当PQ与圆C相切时,,进而可得满足条件的点P形成的图形为大圆(包括内部),即求.【详解】当PQ与圆C相切时,,这种情况为临界情况,当P往外时无法找到点Q使,当P往里时,可以找到Q使,故满足条件的点P形成的图形为大圆(包括内部),如图,由圆,可知圆心,半径为1,则大圆的半径为,∴所有满足条件的点P构成图形的面积为.故选:D.【点睛】关键点点睛:本题的关键是找出临界情况时点所满足的条件,进而即可得到动点满足条件的图形,问题即可解决.12、A【解析】根据众数的概念,求得的值,再根据平均数的计算公式,即可求解.【详解】由题意,甲组数据的众数为16,得,所以乙组数据的平均数为故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据对称性易知:当树苗放在第13或14个坑,26位同学领取树苗往返所走的路程总和最小,再应用等差数列前n项和的求法求26位同学领取树苗往返所走的路程总和.【详解】将26个同学对应的26个坑分左右各13个坑,∴根据对称性:树苗放在左边13个坑,与放在对称右边的13个坑,26个同学所走的总路程对应相等,∴当树苗放在第13个坑,26位同学领取树苗往返所走的路程总和最小,此时,左边13位同学所走的路程分别为,右边13位同学所走的路程分别为,∴最小值为米.故答案为:.14、2【解析】根据已知条件,结合抛物线的定义,即可求解【详解】解:∵抛物线C:y2=2px(p>0)上的点P(1,y0)(y0>0)到焦点的距离为2,∴由抛物线的定义可得,,解得p=2故答案为:215、16【解析】根据等差数列前项和公式及下标和性质以及通项公式计算可得;【详解】解:因为,所以,即,所以,所以,所以;故答案为:16、【解析】至多需要补考一次,分5种情况分别计算后再求和即可.【详解】不需要补考就通过的概率为;仅补考科目一就通过的概率为;仅补考科目二就通过的概率为;仅补考科目三就通过的概率为;仅补考科目三就通过的概率为,一位佛山公民通过驾考四项考试至多需要补考一次的概率为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)首先将圆的参数方程华为普通方程,再转化为极坐标方程即可.(2)首先联立得到,再求的长度即可.【详解】(1)将曲线C的参数方程,(为参数)化为普通方程,得,极坐标方程为.(2)联立方程组,消去得,设点A,B对应的极径分别为,,则,,所以.18、(1)(2)不存在,理由见解析【解析】(1)利用垂直关系,以点为原点,建立空间直角坐标系,分别求平面和平面的法向量和,利用公式,即可求解;(2)若满足条件,,利用向量的坐标表示,判断是否存在点满足.【小问1详解】∵,E为BD的中点∴CE⊥BD,又∵平面⊥平面ABD,平面平面,⊥平面,∴⊥平面ABD,如图以E原点,分别以EB、AE、EC′所在直线为x轴、y轴、z轴建立空间直角坐标系,则B(1,0,0),A(0,-,0),D(-1,0,0),F(0,-,2),(0,0,),∴=(-1,-,2),=(-1,0,),=(1,,0),设平面的法向量为=(x,y,z),则,取z=1,得平面的一个法向量=(,1,1),设平面FBA的法向量为=(a,b,c),则取b=1,得平面FBA的一个法向量为=(-,1,0),∴设平面ABD与平面的夹角为θ,则∴平面ABD与平面夹角的余弦值为.【小问2详解】假设在线段AD上存在M(x,y,z),使得平面,设(0≤λ≤1),则(x,y+,z)=(-1,,0),即(x,y+,z)=(-λ,,0),∴,,z=0,∴,是平面的一个法向量由∥,得,此方程无解.∴线段AD上不存点M,使得平面.19、(1);(2)或.【解析】(1)根据给定条件结合抛物线定义求出p即可作答.(2)联立直线l与抛物线的方程,用点A,B坐标表示出点C,D,M,N的坐标,列出四边形CDMN面积的函数关系,借助均值不等式计算得解.【小问1详解】抛物线的准线:,由抛物线定义得,解得,所以抛物线的方程为.【小问2详解】因为点在上,且,则,即,依题意,,设,,由消去并整理得,则有,,直线PA的斜率是,方程为,令,则,令,则,即点C,点D,同理点M,点N,则,,四边形的面积有:,当且仅当,即时取“=”,所以当时四边形CDMN的面积最小值为4,直线l的方程为或.20、(1)答案不唯一,具体见解析(2)【解析】(1)求导得,在分,两种情况讨论求解即可;(2)根据题意将问题转化为对恒成立,进而构造函数,求解函数最值即可.【小问1详解】解:函数的定义域为,当时,令,得,令,得;当时,令,得,令,得综上,当时,在上单调递减,在上单调递增;当时,在上单调递增,在上单调递减【小问2详解】解:由(1)知,函数在上单调递增,则,所以对恒成立等价于对恒成立设函数,则,设,则,则在上单调递减,所以,则,所以在上单调递减,所以;故,即的取值范围是21、(1);(2)存在,直线AB的方程为:或.【解析】(1)根据给定的渐近线方程及所过的点列式计算作答.(2)假定存在符合条件的直线AB,设出其方程,借助弦长公式计算判断作答.【小问1详解】依题意,,解得:,所以双曲线C的标准方程是.【小问2详解】假定存在直线AB,使得成立,显然不垂直于y轴,否则,设直线:,由消去x并整理得:,因直线与双曲线C的左右支分别交于A、B两点,设,于是得,则有,即或,因此,,解得,所以存在直线AB,使得成立,此时,直线AB的方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教部编版二年级语文上册第14课《我要的是葫芦》精美课件
- 吉首大学《画法几何》2021-2022学年第一学期期末试卷
- 吉首大学《版式设计》2021-2022学年第一学期期末试卷
- 《机床夹具设计》试卷2
- 吉林艺术学院《戏曲栏目策划与制作》2021-2022学年第一学期期末试卷
- 吉林艺术学院《录音艺术基础》2021-2022学年第一学期期末试卷
- 吉林艺术学院《歌曲作法》2021-2022学年第一学期期末试卷
- 2024年公转私佣金协议书模板范本
- 吉林师范大学《用户体验设计》2021-2022学年第一学期期末试卷
- 吉林师范大学《宪法学》2021-2022学年期末试卷
- 《建筑防火通用规范》学习研讨
- 雅各布森翻译理论的解读与启示-对等
- 绩溪县现代化工有限公司年产1000吨34-二氯二苯醚项目(一期工程)竣工环境保护验收报告
- TMF自智网络白皮书4.0
- 所水力除焦设备介绍
- 鼻腔冲洗护理技术考核试题及答案
- 新版UCP600的中英文版下载
- 《企业员工薪酬激励问题研究10000字(论文)》
- 2023年地理知识竞赛试题及答案
- GB 1903.33-2022食品安全国家标准食品营养强化剂5′-单磷酸胞苷(5′-CMP)
- YC/T 207-2014烟用纸张中溶剂残留的测定顶空-气相色谱/质谱联用法
评论
0/150
提交评论