




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年江苏省清江市清江中学全国I卷高考数学试题热身训练试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知为等比数列,,,则()A.9 B.-9 C. D.2.已知,,且是的充分不必要条件,则的取值范围是()A. B. C. D.3.某中学2019年的高考考生人数是2016年高考考生人数的1.2倍,为了更好地对比该校考生的升学情况,统计了该校2016年和2019年的高考情况,得到如图柱状图:则下列结论正确的是().A.与2016年相比,2019年不上线的人数有所增加B.与2016年相比,2019年一本达线人数减少C.与2016年相比,2019年二本达线人数增加了0.3倍D.2016年与2019年艺体达线人数相同4.袋中装有标号为1,2,3,4,5,6且大小相同的6个小球,从袋子中一次性摸出两个球,记下号码并放回,如果两个号码的和是3的倍数,则获奖,若有5人参与摸球,则恰好2人获奖的概率是()A. B. C. D.5.为双曲线的左焦点,过点的直线与圆交于、两点,(在、之间)与双曲线在第一象限的交点为,为坐标原点,若,且,则双曲线的离心率为()A. B. C. D.6.“纹样”是中国艺术宝库的瑰宝,“火纹”是常见的一种传统纹样.为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为3的正方形将其包含在内,并向该正方形内随机投掷200个点,己知恰有80个点落在阴影部分据此可估计阴影部分的面积是()A. B. C.10 D.7.的展开式中,含项的系数为()A. B. C. D.8.已知抛物线上一点到焦点的距离为,分别为抛物线与圆上的动点,则的最小值为()A. B. C. D.9.函数的部分图象大致是()A. B.C. D.10.已知函数(,且)在区间上的值域为,则()A. B. C.或 D.或411.某校团委对“学生性别与中学生追星是否有关”作了一次调查,利用列联表,由计算得,参照下表:0.010.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828得到正确结论是()A.有99%以上的把握认为“学生性别与中学生追星无关”B.有99%以上的把握认为“学生性别与中学生追星有关”C.在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星无关”D.在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星有关”12.把函数的图象向右平移个单位长度,得到函数的图象,若函数是偶函数,则实数的最小值是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知是定义在上的偶函数,其导函数为.若时,,则不等式的解集是___________.14.内角,,的对边分别为,,,若,则__________.15.在直角坐标系中,某等腰直角三角形的两个顶点坐标分别为,函数的图象经过该三角形的三个顶点,则的解析式为___________.16.如图,在复平面内,复数,对应的向量分别是,,则_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某市计划在一片空地上建一个集购物、餐饮、娱乐为一体的大型综合园区,如图,已知两个购物广场的占地都呈正方形,它们的面积分别为13公顷和8公顷;美食城和欢乐大世界的占地也都呈正方形,分别记它们的面积为公顷和公顷;由购物广场、美食城和欢乐大世界围成的两块公共绿地都呈三角形,分别记它们的面积为公顷和公顷.(1)设,用关于的函数表示,并求在区间上的最大值的近似值(精确到0.001公顷);(2)如果,并且,试分别求出、、、的值.18.(12分)已知函数.(1)讨论的单调性;(2)若在定义域内是增函数,且存在不相等的正实数,使得,证明:.19.(12分)已知函数.(1)当时.①求函数在处的切线方程;②定义其中,求;(2)当时,设,(为自然对数的底数),若对任意给定的,在上总存在两个不同的,使得成立,求的取值范围.20.(12分)在平面四边形中,已知,.(1)若,求的面积;(2)若求的长.21.(12分)已知函数为实数)的图像在点处的切线方程为.(1)求实数的值及函数的单调区间;(2)设函数,证明时,.22.(10分)设,(1)求的单调区间;(2)设恒成立,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
根据等比数列的下标和性质可求出,便可得出等比数列的公比,再根据等比数列的性质即可求出.【详解】∵,∴,又,可解得或设等比数列的公比为,则当时,,∴;当时,,∴.故选:C.【点睛】本题主要考查等比数列的性质应用,意在考查学生的数学运算能力,属于基础题.2、D【解析】
“是的充分不必要条件”等价于“是的充分不必要条件”,即中变量取值的集合是中变量取值集合的真子集.【详解】由题意知:可化简为,,所以中变量取值的集合是中变量取值集合的真子集,所以.【点睛】利用原命题与其逆否命题的等价性,对是的充分不必要条件进行命题转换,使问题易于求解.3、A【解析】
设2016年高考总人数为x,则2019年高考人数为,通过简单的计算逐一验证选项A、B、C、D.【详解】设2016年高考总人数为x,则2019年高考人数为,2016年高考不上线人数为,2019年不上线人数为,故A正确;2016年高考一本人数,2019年高考一本人数,故B错误;2019年二本达线人数,2016年二本达线人数,增加了倍,故C错误;2016年艺体达线人数,2019年艺体达线人数,故D错误.故选:A.【点睛】本题考查柱状图的应用,考查学生识图的能力,是一道较为简单的统计类的题目.4、C【解析】
先确定摸一次中奖的概率,5个人摸奖,相当于发生5次试验,根据每一次发生的概率,利用独立重复试验的公式得到结果.【详解】从6个球中摸出2个,共有种结果,两个球的号码之和是3的倍数,共有摸一次中奖的概率是,5个人摸奖,相当于发生5次试验,且每一次发生的概率是,有5人参与摸奖,恰好有2人获奖的概率是,故选:.【点睛】本题主要考查了次独立重复试验中恰好发生次的概率,考查独立重复试验的概率,解题时主要是看清摸奖5次,相当于做了5次独立重复试验,利用公式做出结果,属于中档题.5、D【解析】
过点作,可得出点为的中点,由可求得的值,可计算出的值,进而可得出,结合可知点为的中点,可得出,利用勾股定理求得(为双曲线的右焦点),再利用双曲线的定义可求得该双曲线的离心率的值.【详解】如下图所示,过点作,设该双曲线的右焦点为,连接.,.,,,为的中点,,,,,由双曲线的定义得,即,因此,该双曲线的离心率为.故选:D.【点睛】本题考查双曲线离心率的求解,解题时要充分分析图形的形状,考查推理能力与计算能力,属于中等题.6、D【解析】
直接根据几何概型公式计算得到答案.【详解】根据几何概型:,故.故选:.【点睛】本题考查了根据几何概型求面积,意在考查学生的计算能力和应用能力.7、B【解析】
在二项展开式的通项公式中,令的幂指数等于,求出的值,即可求得含项的系数.【详解】的展开式通项为,令,得,可得含项的系数为.故选:B.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.8、D【解析】
利用抛物线的定义,求得p的值,由利用两点间距离公式求得,根据二次函数的性质,求得,由取得最小值为,求得结果.【详解】由抛物线焦点在轴上,准线方程,则点到焦点的距离为,则,所以抛物线方程:,设,圆,圆心为,半径为1,则,当时,取得最小值,最小值为,故选D.【点睛】该题考查的是有关距离的最小值问题,涉及到的知识点有抛物线的定义,点到圆上的点的距离的最小值为其到圆心的距离减半径,二次函数的最小值,属于中档题目.9、C【解析】
判断函数的性质,和特殊值的正负,以及值域,逐一排除选项.【详解】,函数是奇函数,排除,时,,时,,排除,当时,,时,,排除,符合条件,故选C.【点睛】本题考查了根据函数解析式判断函数图象,属于基础题型,一般根据选项判断函数的奇偶性,零点,特殊值的正负,以及单调性,极值点等排除选项.10、C【解析】
对a进行分类讨论,结合指数函数的单调性及值域求解.【详解】分析知,.讨论:当时,,所以,,所以;当时,,所以,,所以.综上,或,故选C.【点睛】本题主要考查指数函数的值域问题,指数函数的值域一般是利用单调性求解,侧重考查数学运算和数学抽象的核心素养.11、B【解析】
通过与表中的数据6.635的比较,可以得出正确的选项.【详解】解:,可得有99%以上的把握认为“学生性别与中学生追星有关”,故选B.【点睛】本题考查了独立性检验的应用问题,属于基础题.12、A【解析】
先求出的解析式,再求出的解析式,根据三角函数图象的对称性可求实数满足的等式,从而可求其最小值.【详解】的图象向右平移个单位长度,所得图象对应的函数解析式为,故.令,,解得,.因为为偶函数,故直线为其图象的对称轴,令,,故,,因为,故,当时,.故选:A.【点睛】本题考查三角函数的图象变换以及三角函数的图象性质,注意平移变换是对自变量做加减,比如把的图象向右平移1个单位后,得到的图象对应的解析式为,另外,如果为正弦型函数图象的对称轴,则有,本题属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
构造,先利用定义判断的奇偶性,再利用导数判断其单调性,转化为,结合奇偶性,单调性求解不等式即可.【详解】令,则是上的偶函数,,则在上递减,于是在上递增.由得,即,于是,则,解得.故答案为:【点睛】本题考查了利用函数的奇偶性、单调性解不等式,考查了学生综合分析,转化划归,数学运算的能力,属于较难题.14、【解析】∵,∴,即,∴,∴.15、【解析】
结合题意先画出直角坐标系,点出所有可能组成等腰直角三角形的点,采用排除法最终可确定为点,再由函数性质进一步求解参数即可【详解】等腰直角三角形的第三个顶点可能的位置如下图中的点,其中点与已有的两个顶点横坐标重复,舍去;若为点则点与点的中间位置的点的纵坐标必然大于或小于,不可能为,因此点也舍去,只有点满足题意.此时点为最大值点,所以,又,则,所以点,之间的图像单调,将,代入的表达式有由知,因此.故答案为:【点睛】本题考查由三角函数图像求解解析式,数形结合思想,属于中档题16、【解析】试题分析:由坐标系可知考点:复数运算三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),最大值公顷;(2)17、25、5、5.【解析】
(1)由余弦定理求出三角形ABC的边长BC,进而可以求出,,由面积公式求出,,即可求出,并求出最值;(2)由(1)知,,,即可求出、,再算出,代入(1)中表达式求出,。【详解】(1)由余弦定理得,,所以,,同理可得又,所以,故在区间上的最大值为,近似值为。(2)由(1)知,,,所以,进而,由知,,,故、、、的值分别是17、25、5、5。【点睛】本题主要考查利用余弦定理解三角形以及同角三角函数平方关系的应用,意在考查学生的数学建模以及数学运算能力。18、(1)当时,在上递增,在上递减;当时,在上递增,在上递减,在上递增;当时,在上递增;当时,在上递增,在上递减,在上递增;(2)证明见解析【解析】
(1)对求导,分,,进行讨论,可得的单调性;(2)在定义域内是是增函数,由(1)可知,,设,可得,则,设,对求导,利用其单调性可证明.【详解】解:的定义域为,因为,所以,当时,令,得,令,得;当时,则,令,得,或,令,得;当时,,当时,则,令,得;综上所述,当时,在上递增,在上递减;当时,在上递增,在上递减,在上递增;当时,在上递增;当时,在上递增,在上递减,在上递增;(2)在定义域内是是增函数,由(1)可知,此时,设,又因为,则,设,则对于任意成立,所以在上是增函数,所以对于,有,即,有,因为,所以,即,又在递增,所以,即.【点睛】本题主要考查利用导数研究含参函数的单调性及导数在极值点偏移中的应用,考查学生分类讨论与转化的思想,综合性大,属于难题.19、(1)①;②8079;(2).【解析】
(1)①时,,,利用导数的几何意义能求出函数在处的切线方程.②由,得,由此能求出的值.(2)根据若对任意给定的,,在区间,上总存在两个不同的,使得成立,得到函数在区间,上不单调,从而求得的取值范围.【详解】(1)①∵,∴∴,∴,∵,所以切线方程为.②,.令,则,.因为①,所以②,由①+②得,所以.所以.(2),当时,函数单调递增;当时,,函数单调递减∵,,所以,函数在上的值域为.因为,,故,,①此时,当变化时、的变化情况如下:—0+单调减最小值单调增∵,,∴对任意给定的,在区间上总存在两个不同的,使得成立,当且仅当满足下列条件,即令,,,当时,,函数单调递增,当时,,函数单调递减所以,对任意,有,即②对任意恒成立.由③式解得:④综合①④可知,当时,对任意给定的,在上总存在两个不同的,使成立.【点睛】本题考查了导数的几何意义、应用导数研究函数的单调性、求函数最值问题,会利用导函数的正负确定函数的单调性,会根据函数的增减性求出闭区间上函数的最值,掌握不等式恒成立时所满足的条件.不等式恒成立常转化为函数最值问题解决.20、(1);(2).【解析】
(1)在三角形中,利用余弦定理列方程,解方程求得的长,进而由三角形的面积公式求得三角形的面积.(2)利用诱导
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公摊电梯合同样本
- 亚克力材料加工合同样本
- 公交车加油站出租合同样本
- 代理销售系列汽车合同样本
- ppp合同样本 政府
- 公摊电费合同标准文本
- 公司采购电脑合同样本
- 保定劳务派遣合同样本
- 供热采暖合同样本
- 中介陪玩合同样本
- 婴幼儿蚊虫咬伤概述陈丹丹讲解
- 学校1530安全教育记录
- 《市政工程施工安全检查标准》(CJJ-T275-2018)
- 历史选择题中常见的名词解释课件-高三历史统编版二轮复习
- 自建房质量安全课件
- 北师大版二年级数学下册各单元测试卷
- 保险运营培训课件
- 品管圈PDCA改善案例-降低住院患者跌倒发生率
- 拆除吸收塔、烟道,安装风机施工方案
- 2024年售后服务响应与处理时间框架3篇
- 2024-2025学年江苏省淮安市高三第一次模拟考试物理试卷(含答案)
评论
0/150
提交评论