版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届陕西咸阳市高二上数学期末经典模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在等差数列中,若,则的值为()A. B.C. D.2.在等差数列中,,,则使数列的前n项和成立的最大正整数n=()A.2021 B.2022C.4041 D.40423.已知函数的图象是下列四个图象之一,且其导函数的图象如图所示,则该函数的图象是()A. B.C. D.4.已知直线l:过椭圆的左焦点F,与椭圆在x轴上方的交点为P,Q为线段PF的中点,若,则椭圆的离心率为()A. B.C. D.5.在正方体中中,,若点P在侧面(不含边界)内运动,,且点P到底面的距离为3,则异面直线与所成角的余弦值是()A. B.C. D.6.若存在两个不相等的正实数x,y,使得成立,则实数m的取值范围是()A. B.C. D.7.设正实数,满足(其中为正常数),若的最大值为3,则()A.3 B.C. D.8.若,满足约束条件则的最大值是A.-8 B.-3C.0 D.19.已知向量,且,则的值为()A.4 B.2C.3 D.110.设实系数一元二次方程在复数集C内的根为、,则由,可得.类比上述方法:设实系数一元三次方程在复数集C内的根为,则的值为A.﹣2 B.0C.2 D.411.在中,已知角A,B,C所对边为a,b,c,,,,则()A. B.C. D.112.已知F1(-5,0),F2(5,0),动点P满足|PF1|-|PF2|=2a,当a为3和5时,点P的轨迹分别为()A.双曲线和一条直线 B.双曲线和一条射线C.双曲线的一支和一条直线 D.双曲线的一支和一条射线二、填空题:本题共4小题,每小题5分,共20分。13.总书记在“十九大”报告中指出:坚定文化自信,推动中华优秀传统文化创造性转化.“杨辉三角”揭示了二项式系数在三角形中的一种几何排列规律,最早在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现,欧洲数学家帕斯卡在1654年才发现这一规律,比杨辉要晚近四百年.“杨辉三角”是中国数学史上的一个伟大成就,激发起一批又一批数学爱好者的探究欲望.如图所示,在由二项式系数所构成的“杨辉三角中,第10行第8个数是______14.在正方体中,,,P,F分别是线段,的中点,则点P到直线EF的距离是___________.15.抛物线焦点坐标是,则______16.若实数x,y满足约束条件,则的最大值是_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)求的单调区间;(2)求函数在区间上的最大值与最小值.18.(12分)记为数列的前项和,且(1)求的通项公式;(2)设,求数列的前项和19.(12分)已知函数(1)讨论的单调性;(2)当时,证明20.(12分)已知点,点B为直线上的动点,过B作直线的垂线,线段AB的中垂线与交于点P(1)求点P的轨迹C的方程;(2)若过点的直线l与曲线C交于M,N两点,求面积的最小值.(O为坐标原点)21.(12分)已知抛物线上任意一点到焦点F最短距离为2,(1)求抛物线C的方程;(2)过焦点F的直线,互相垂直,且与C分别交于A,B,M,N四点,求四边形AMBN面积的最小值22.(10分)已知数列的首项,前n项和为,且满足.(1)求证:数列是等比数列;(2)设,求数列的前n项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用等差数列性质可求得,由可求得结果.【详解】由等差数列性质知:,,解得:;又,.故选:C.2、C【解析】根据等差数列的性质易得,,再应用等差数列前n项和公式及等差中项、下标和的性质可得、,即可确定答案.【详解】因为是等差数列且,,所以,,.故选:C.3、A【解析】利用导数与函数的单调性之间的关系及导数的几何意义即得.【详解】由函数f(x)的导函数y=f′(x)的图像自左至右是先减后增,可知函数y=f(x)图像的切线的斜率自左至右先减小后增大,且,在处的切线的斜率为0,故BCD错误,A正确.故选:A.4、D【解析】由直线的倾斜角为,可得,结合,可推得是等边三角形,可得,计算可得离心率【详解】直线:过椭圆的左焦点,设椭圆的右焦点为,所以,又是的中点,是的中点,所以,又,所以,又,所以是等边三角形,所以,又在椭圆上,所以,所以,所以离心率为,故选:5、A【解析】如图建立空间直角坐标系,先由,且点P到底面的距离为3,确定点P的位置,然后利用空间向量求解即可【详解】如图,以为坐标原点,以所在的直线分别为轴,建立空间直角坐标系,则,所以,所以,所以,因为,所以平面,因为平面平面,点P在侧面(不含边界)内运动,,所以,因为点P到底面的距离为3,所以,所以,因为,所以异面直线与所成角的余弦值为,故选:A6、D【解析】将给定等式变形并构造函数,由函数的图象与垂直于y轴的直线有两个公共点推理作答.【详解】因,令,则存在两个不相等的正实数x,y,使得,即存在垂直于y轴的直线与函数的图象有两个公共点,,,而,当时,,函数在上单调递增,则垂直于y轴的直线与函数的图象最多只有1个公共点,不符合要求,当时,由得,当时,,当时,,即函数在上单调递减,在上单调递增,,令,,令,则,即在上单调递增,,即,在上单调递增,则有当时,,,而函数在上单调递增,取,则,而,因此,存在垂直于y轴的直线(),与函数的图象有两个公共点,所以实数m的取值范围是.故选:D【点睛】思路点睛:涉及双变量的等式或不等式问题,把双变量的等式或不等式转化为一元变量问题求解,途径都是构造一元函数.7、D【解析】由于,,为正数,且,所以利用基本不等式可求出结果【详解】解:因为正实数,满足(其中为正常数),所以,则,所以,所以故选:D.8、C【解析】作出可行域,把变形为,平移直线过点时,最大.【详解】作出可行域如图:由得:,作出直线,平移直线过点时,.故选C.【点睛】本题主要考查了简单线性规划问题,属于中档题.9、A【解析】由题意可得,利用空间向量数量积的坐标表示列方程,解方程即可求解.【详解】因为,所以,因为向量,,所以,解得,所以的值为,故选:A.10、A【解析】用类比推理得到,再用待定系数法得到,,再根据求解.【详解】,由对应系数相等得:,.故选:A.【点睛】本题主要考查合情推理以及待定系数法,还考查了转化化归的思想和逻辑推理的能力,属于中档题.11、B【解析】利用正弦定理求解.【详解】在中,由正弦定理得,解得,故选:B.12、D【解析】由双曲线定义结合参数a的取值分类讨论而得.【详解】依题意得,当时,,且,点P的轨迹为双曲线的右支;当时,,故点P的轨迹为一条射线.故选D.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、120【解析】根据二项式的展开式系数的相关知识即可求解.【详解】因为,二项式展开式第项的系数为,所以,第10行第8个数是.故答案为:12014、【解析】以A为坐标原点建立空间直角坐标系,利用向量法即可求解点P到直线EF的距离.【详解】解:如图,以A为坐标原点,,,的方向分别为x,y,z轴的正方向,建立空间直角坐标系,因为,所以,,,所以,,所以点P到直线EF的距离.故答案为:.15、2【解析】根据抛物线的几何性质直接求解可得.【详解】的焦点坐标为,即.故答案为:216、##【解析】画出可行域,通过平移基准直线到可行域边界位置,由此求得的最大值.【详解】,画出可行域如下图所示,由图可知,平移基准直线到点时,取得最大值为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)单调递增区间为;单调减区间为和;(2);.【解析】(1)求出导函数,令,求出单调递增区间;令,求出单调递减区间.(2)求出函数的单调区间,利用函数的单调性即可求解.【详解】1函数的定义域是R,,令,解得令,解得或,所以的单调递增区间为,单调减区间为和;2由在单调递减,在单调递增,所以,而,,故最大值是.18、(1)(2)【解析】(1)利用,再结合等比数列的概念,即可求出结果;(2)由(1)可知数列是以为首项,公差为的等差数列,根据等差数列的前项和公式,即可求出结果.【小问1详解】解:当时,,解得;当且时,所以所以是以为首项,为公比的等比数列所以;【小问2详解】解:由(1)可知,所以,又,所以数列是以为首项,公差为的等差数列,所以数列的前项和.19、(1)答案见解析(2)证明见解析【解析】(1)求导得,进而分和两种情况讨论求解即可;(2)根据题意证明,进而令,再结合(1)得,研究函数的性质得,进而得时,,即不等式成立.【小问1详解】解:函数的定义域为,,∴当时,在上恒成立,故函数在区间上单调递增;当时,由得,由得,即函数在区间上单调递增,在上单调递减;综上,当时,在区间上单调递增;当时,在区间上单调递增,在上单调递减;【小问2详解】证明:因为时,证明,只需证明,由(1)知,当时,函数在区间上单调递增,在上单调递减;所以.令,则,所以当时,,函数单调递减;当时,,函数单调递增,所以.所以时,,所以当时,20、(1)(2)【解析】(1)由已知可得,根据抛物线的定义可知点的轨迹是以为焦点,为准线的抛物线,即可得到轨迹方程;(2)设直线方程为,,,,,联立直线与抛物线方程,消元、列出韦达定理,则,代入韦达定理,即可求出面积最小值;【小问1详解】解:由已知可得,,即点到定点的距离等于到直线的距离,故点的轨迹是以为焦点,为准线的抛物线,所以点的轨迹方程为【小问2详解】解:当直线的倾斜角为时,与曲线只有一个交点,不符合题意;当直线的倾斜角不为时,设直线方程为,,,,,由,可得,,所以,,,,所以当且仅当时取等号,即面积的最小值为;21、(1)(2)128【解析】(1)设抛物线上任一点为,由可得答案.(2)由题意可知,的斜率k存在且不为0,设出其方程并与抛物线方程联立,得出韦达定理,从而得出弦长的表达式,同理得出弦长的表达式,进而得出四边形AMBN面积的不等式,从而求出其最小值.【小问1详解】设抛物线上任一点为,则,所以当时,,又∵,∴,即所以抛物线C的方程为【小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 沈阳理工大学《环境设计》2023-2024学年第一学期期末试卷
- 全国统考2024高考历史一轮复习第九单元20世纪世界经济体制的创新与世界经济全球化趋势第27讲古代中国的科学技术与文学艺术课时作业含解析新人教版
- 煤矿应急应急救援
- 2024年合作小车客运从业资格证考试
- 2024年毕节道路客运从业资格证考试
- 美食广场租赁管理合同附件
- 2024标准房屋租赁合同书(常用版)
- 2024二手车分期付款合同
- 卫生部临床检验中心详解
- 2024建筑工程钢筋承包合同书格式
- 形式发票样本(Proforma Invoice)
- 医院车辆加油卡管理制度
- 临床路径实施情况、存在问题及整改措施
- 数独题目高级50题(后附答案)【最新】
- (完整word版)上海博物馆文物术语中英文对照
- 问题线索办理呈批表
- 调度自动化及通信技术监督实施细则
- 学、练、评一体化课堂模式下赛的两个问题与对策
- 陕西省尾矿资源综合利用
- 磁悬浮列车(课堂PPT)
- 常见药品配伍表
评论
0/150
提交评论