版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖南省岳阳市达标名校高二上数学期末联考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.2021年是中国共产党百年华诞,3月24日,中宣部发布中国共产党成立100周年庆祝活动标识(如图1).其中“100”的两个“0”设计为两个半径为R的相交大圆,分别内含一个半径为r的同心小圆,且同心小圆均与另一个大圆外切(如图2).已知,则由其中一个圆心向另一个小圆引的切线长与两大圆的公共弦长之比为()A. B.3C. D.2.若直线与曲线有公共点,则b的取值范围是()A. B.C. D.3.已知直线:和直线:,抛物线上一动点P到直线和直线的距离之和的最小值是()A. B.C. D.4.设等比数列的前项和为,若,则的值是()A. B.C. D.45.点F是抛物线的焦点,点,P为抛物线上一点,P不在直线AF上,则△PAF的周长的最小值是()A.4 B.6C. D.6.已知三棱锥OABC,点M,N分别为AB,OC的中点,且,用表示,则等于()A. B.C. D.7.过原点O作两条相互垂直的直线分别与椭圆交于A、C与B、D,则四边形ABCD面积最小值为()A B.C. D.8.北京大兴国际机场的显著特点之一是各种弯曲空间的运用,在数学上用曲率刻画空间弯曲性.规定:多面体的顶点的曲率等于与多面体在该点的面角之和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和.例如:正四面体在每个顶点有个面角,每个面角是,所以正四面体在每个顶点的曲率为,故其总曲率为.给出下列三个结论:①正方体在每个顶点的曲率均为;②任意四棱锥总曲率均为;③若某类多面体的顶点数,棱数,面数满足,则该类多面体的总曲率是常数.其中,所有正确结论的序号是()A.①② B.①③C.②③ D.①②③9.已知命题是真命题,那么的取值范围是()A. B.C. D.10.已知圆与圆,则两圆的位置关系是()A.外切 B.内切C.相交 D.相离11.在中,内角的对边分别为,若,则角为A. B.C. D.12.总体有编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取3个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第3个个体的编号为()7816657208026314070243699728019832049234493582003623486969387481A.08 B.02C.63 D.14二、填空题:本题共4小题,每小题5分,共20分。13.已知圆的圆心与点关于直线对称,直线与圆相交于、两点,且,则圆的方程为_________14.在梯形中,,,.将梯形绕所在的直线旋转一周而形成的曲面所围成的几何体的体积为______.15.已知点为双曲线的左焦点,过原点的直线l与双曲线C相交于P,Q两点.若,则______16.过点与直线平行的直线的方程是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知双曲线的左,右焦点为,离心率为.(1)求双曲线C的渐近线方程;(2)过作斜率为k的直线l分别交双曲线的两条渐近线于A,B两点,若,求k的值.18.(12分)已知抛物线的准线方程是.(Ⅰ)求抛物线的方程;(Ⅱ)设直线与抛物线相交于,两点,为坐标原点,证明:.19.(12分)在对某老旧小区污水分流改造时,需要给该小区重新建造一座底面为矩形且容积为324立方米的三级污水处理池(平面图如图所示).已知池的深度为2米,如果池四周围墙的建造单价为400元/平方米,中间两道隔墙的建造单价为248元/平方米,池底的建造单价为80元/平方米,池盖的建造单价为100元/平方米,建造此污水处理池相关人员的劳务费以及其他费用是9000元.(水池所有墙的厚度以及池底池盖的厚度按相关规定执行,计算时忽略不计)(1)现有财政拨款9万元,如果将污水处理池的宽建成9米,那么9万元的拨款是否够用?(2)能否通过合理的设计污水处理池的长和宽,使总费用最低?最低费用为多少万元?20.(12分)已知数列是等差数列,(1)求的通项公式;(2)求的最大项21.(12分)已知椭圆C:的长轴长为4,过C的一个焦点且与x轴垂直的直线被C截得的线段长为3(1)求C的方程;(2)若直线:与C交于A,B两点,线段AB的中垂线与C交于P,Q两点,且,求m的值22.(10分)某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样方法(按A类,B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数)(1)A类工人中和B类工人各抽查多少工人?(2)从A类工人中抽查结果和从B类工人中的抽查结果分别如下表1和表2:表1:生产能力分组人数48x53表2:生产能力分组人数6y3618①先确定x,y,再在答题纸上完成下列频率分布直方图.就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)②分别估计A类工人和B类工人生产能力的平均数,并估计该工厂工人和生产能力的平均数(同一组中的数据用该区间的中点值作代表)图1A类工人生产能力的频率分布直方图图2B类工人生产能力的频率分布直方图
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】作出图形,进而根据勾股定理并结合圆与圆的位置关系即可求得答案.【详解】如示意图,由题意,,则,又,,所以,所以.故选:C.2、D【解析】将本题转化为直线与半圆的交点问题,数形结合,求出的取值范围【详解】将曲线的方程化简为即表示以为圆心,以2为半径的一个半圆,如图所示:当直线经过时最大,即,当直线与下半圆相切时最小,由圆心到直线距离等于半径2,可得:解得(舍去),或结合图象可得故选:D.3、A【解析】根据已知条件,结合抛物线的定义,可得点P到直线和直线的距离之和,当B,P,F三点共线时,最小,再结合点到直线的距离公式,即可求解【详解】∵抛物线,∴抛物线的准线为,焦点为,∴点P到准线的距离PA等于点P到焦点F的距离PF,即,∴点P到直线和直线的距离之和,∴当B,P,F三点共线时,最小,∵,∴,∴点P到直线和直线的距离之和的最小值为故选:A4、B【解析】根据题意,由等比数列的性质可知成等比数列,从而可得,即可求出的结果.【详解】解:已知等比数列的前项和为,,由等比数列的性质得:成等比数列,且公比不为-1即成等比数列,,,.故选:B.5、C【解析】由抛物线的定义转化后求距离最值【详解】抛物线的焦点,准线为过点作准线于点,故△PAF的周长为,,可知当三点共线时周长最小,为故选:C6、D【解析】根据空间向量的加法、减法和数乘运算可得结果.【详解】.故选:D7、A【解析】直线AC、BD与坐标轴重合时求出四边形面积,与坐标轴不重合求出四边形ABCD面积最小值,再比较大小即可作答.【详解】因四边形ABCD的两条对角线互相垂直,由椭圆性质知,四边形ABCD的四个顶点为椭圆顶点时,而,四边形ABCD的面积,当直线AC斜率存在且不0时,设其方程为,由消去y得:,设,则,,直线BD方程为,同理得:,则有,当且仅当,即或时取“=”,而,所以四边形ABCD面积最小值为.故选:A8、D【解析】根据曲率的定义依次判断即可.【详解】①根据曲率的定义可得正方体在每个顶点的曲率为,故①正确;②由定义可得多面体的总曲率顶点数各面内角和,因为四棱锥有5个顶点,5个面,分别为4个三角形和1个四边形,所以任意四棱锥的总曲率为,故②正确;③设每个面记为边形,则所有的面角和为,根据定义可得该类多面体的总曲率为常数,故③正确.故选:D.9、C【解析】依据题意列出关于的不等式,即可求得的取值范围.【详解】当时,仅当时成立,不符合题意;当时,若成立,则,解之得综上,取值范围是故选:C10、A【解析】求得两圆的圆心和半径,再根据圆心距与半径之和半径之差的关系,即可判断位置关系.【详解】对圆,其圆心,半径;对圆,其圆心,半径;又,故两圆外切.故选:A.11、A【解析】因为,那么结合,所以cosA==,所以A=,故答案为A考点:正弦定理与余弦定理点评:本题主要考查正弦定理与余弦定理的基本应用,属于中等题.12、D【解析】由随机数表法抽样原理即可求出答案.【详解】根据题意,依次读出的数据为65(舍去),72(舍去),08,02,63(舍去),14,即第三个个体编号为14.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用对称条件求出圆心C的坐标,借助直线被圆所截弦长求出圆半径即可写出圆的方程.【详解】设圆的圆心,依题意,,解得,即圆心,点C到直线的距离,因圆截直线所得弦AB长为6,于是得圆C的半径所以圆的方程为:.故答案为:14、##【解析】画出几何体的直观图,利用已知条件,求解几何体的体积即可【详解】梯形ABCD:由题意可知空间几何体的直观图如图:旋转体是底面半径为1,高为2的圆柱,挖去一个相同底面高为1的圆锥,几何体的体积为:故答案为:15、7【解析】先证明四边形是平行四边形,再根据双曲线的定义可求解.【详解】由双曲线的对称性,可知,又,所以四边形是平行四边形,所以,由,可知点在双曲线的左支,如下图所示:由双曲线定义有,又,所以.故答案为:16、【解析】根据给定条件设出所求直线方程,利用待定系数法求解即得.【详解】设与直线平行的直线的方程为,而点在直线上,于是得,解得,所以所求的直线的方程为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由离心率可得双曲线的渐近线方程;(2)设,则的中点为,由,可得,然后的方程与双曲线的渐近线方程联立,利用韦达定理可得答案.【小问1详解】设,则,又,所以,得,所以双曲线的渐近线方程为.【小问2详解】由已知直线的倾斜角不是直角,,设,则的中点为,,由,可知,所以,即,因为的方程为,双曲线的渐近线方程可写为,由消去y,得,所以,,所以,因为,所以,即.18、(Ⅰ)(Ⅱ)详见解析【解析】(Ⅰ)利用排趋性的准线方程求出p,即可求解抛物线的方程;(Ⅱ)直线y=k(x-2)(k≠0)与抛物线联立,通过韦达定理求解直线的斜率关系即可证明OM⊥ON试题解析:(Ⅰ)解:因为抛物线的准线方程为,所以,解得,所以抛物线的方程为.(Ⅱ)证明:设,.将代入,消去整理得.所以.由,,两式相乘,得,注意到,异号,所以.所以直线与直线的斜率之积为,即.考点:直线与抛物线的位置关系;抛物线的标准方程19、(1)不够;(2)将污水处理池建成长为16.2米,宽为10米时,建造总费用最低,最低费用为90000元.【解析】(1)根据题意结合单价直接计算即可得出;(2)设污水处理池的宽为米,表示出总费用,利用基本不等式可求.【小问1详解】如果将污水处理池的宽建成9米,则长为(米),建造总费用为:(元)因为,所以如果污水处理池的宽建成9米,那么9万元的拨款是不够用的.【小问2详解】设污水处理池的宽为米,建造总费用为元,则污水处理池的长为米.则因为,等号仅当,即时成立,所以时建造总费用取最小值90000,所以将污水处理池建成长为16.2米,宽为10米时,建造总费用最低,最低费用为90000元.20、(1);(2).【解析】(1)利用等差数列的通项公式进行求解即可;(2)运用二次函数的性质进行求解即可.【小问1详解】设等差数列的公差为,所以有,所以;【小问2详解】由(1)可知:,当时,有最大项,最大项为:.21、(1);(2).【解析】(1)由题设可得且,求出,即可得椭圆方程.(2)联立直线l和椭圆C并整理为关于x的一元二次方程,由求出m的范围,再应用韦达定理、弦长公式求,进而可得线段AB的中垂线,同理联立曲线C求相交弦长,再由已知条件求m值,注意其范围.【小问1详解】由题意知,,则,令,可得,由题设有,则,所以C的方程为【小问2详解】联立方程得:,由,得设,,则,,所以,另一方面,,即线段AB的中点为,所以线段AB的中垂线方程为令,联立方程得:同理求法,可得:,即因此,解得,故22、(1)25,75(2)①5,15,直方图见解析,B类②123,133.8,131.1【解析】(1)先计算抽样比为,进而可得各层抽取人数(2)①类、类工人人数之比为,按此比例确定两类工人需抽取的人
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学班主任2022年度个人工作计划(5篇)
- 叉车出租行业供需趋势及投资风险研究报告
- 中国汽车半导体行业市场前瞻与投资战略规划分析报告
- 《鲁滨逊漂流记》学生读后感
- 写给女朋友的道歉信(汇编15篇)
- 关于试用期工作总结模板汇编七篇
- 环境演讲稿范文集合6篇
- 高中教师个人工作计划3篇集锦
- 房屋中介买卖合同
- 高中语文教学反思15篇
- 大学物理实验智慧树知到期末考试答案2024年
- 国有企业股权转让规定
- 收费站一站一品方案
- 2024年保险考试-车险查勘定损员笔试历年真题荟萃含答案
- 5G网络安全风险评估与缓解措施
- 2024届湖南省长沙市高三新高考适应性考试生物试题(含答案解析)
- 保洁项目经理年终总结报告
- 2024年四川省普通高中学业水平考试(思想政治样题)
- 精液的常规检测课件
- 《青纱帐-甘蔗林》 课件 2024年高教版(2023)中职语文基础模块下册
- 碳纤维气瓶制作流程介绍课件
评论
0/150
提交评论