版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖南省五市十校数学高二上期末检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列的前n项和为,,,则()A. B.C. D.2.已知等比数列{an}中,,,则()A. B.1C. D.43.如图,空间四边形OABC中,,,,点M在上,且,点N为BC中点,则()A. B.C. D.4.执行如图所示的程序框图,若输出的,则输人的()A. B.或C. D.或5.北京大兴国际机场的显著特点之一是各种弯曲空间的运用,在数学上用曲率刻画空间弯曲性.规定:多面体的顶点的曲率等于与多面体在该点的面角之和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和.例如:正四面体在每个顶点有个面角,每个面角是,所以正四面体在每个顶点的曲率为,故其总曲率为.给出下列三个结论:①正方体在每个顶点的曲率均为;②任意四棱锥总曲率均为;③若某类多面体的顶点数,棱数,面数满足,则该类多面体的总曲率是常数.其中,所有正确结论的序号是()A.①② B.①③C.②③ D.①②③6.对于三次函数,给出定义:设是函数的导数,是的导数,若方程有实数解,则称点为函数的“拐点”.经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数图象都有对称中心,且“拐点”就是对称中心.设函数,则()A. B.C. D.7.年底以来,我国多次在重要场合和政策文件中提及碳中和,碳中和指的是二氧化碳排放量和吸收量可以正负抵消,实现二氧化碳“零排放”.二氧化碳的分子是由一个碳原子和两个氧原子构成的,其结构式为.已知氧有、、三种天然同位素,碳有、、三种天然同位素,则由上述同位素可构成的不同二氧化碳分子共有()A.种 B.种C.种 D.种8.如图,在三棱锥中,两两垂直,且,点E为中点,若直线与所成的角为,则三棱锥的体积等于()A. B.C.2 D.9.若双曲线一条渐近线被圆所截得的弦长为,则双曲线的离心率是()A. B.C. D.10.已知数列的前n项和为,且对任意正整数n都有,若,则()A.2019 B.2020C.2021 D.202211.若椭圆的一个焦点为,则的值为()A.5 B.3C.4 D.212.若直线与圆:相切,则()A.-2 B.-2或6C.2 D.-6或2二、填空题:本题共4小题,每小题5分,共20分。13.已知数列满足,则=________.14.从1,2,3,4,5中任取两个不同的数,其中一个作为对数的底数a,另一个作为对数的真数b.则的概率为______.15.已知实数x,y满足约束条件,则的最小值为______.16.若圆平分圆的周长,则直线被圆所截得的弦长为____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)p:方程有两个不等的负实数根;q:方程无实数根,若为真命题,为假命题,求实数m的取值范围、18.(12分)如图,四棱锥中,,,,平面.(1)在线段上是否存在一点使得平面?若存在,求出的位置;若不存在,请说明理由;(2)求四棱锥的体积.19.(12分)已知函数其中.(1)当时,求函数的单调区间;(2)当时,函数有两个零点,,满足,证明.20.(12分)在中,角、、所对的边分别为、、,且(1)求证;、、成等差数列;(2)若,的面积为,求的周长21.(12分)若函数在区间上的最大值为9,最小值为1.(1)求a,b的值;(2)若方程在上有两个不同的解,求实数k的取值范围.22.(10分)已知函数.(1)若在处取得极值,求在处的切线方程;(2)讨论的单调性;(3)若函数在上无零点,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据给定递推公式求出即可计算作答.【详解】因数列的前n项和为,,,则,,,所以.故选:D2、D【解析】设公比为,然后由已知条件结合等比数列的通项公式列方程求出,从而可求出,【详解】设公比为,因为等比数列{an}中,,,所以,所以,解得,所以,得故选:D3、B【解析】利用空间向量运算求得正确答案.【详解】.故选:B4、A【解析】根据题意可知该程序框图显示的算法函数为,分和两种情况讨论即可得解.【详解】解:该程序框图显示得算法函数为,由,当时,,方程无解;当时,,解得,综上,若输出的,则输入的.故选:A.5、D【解析】根据曲率的定义依次判断即可.【详解】①根据曲率的定义可得正方体在每个顶点的曲率为,故①正确;②由定义可得多面体的总曲率顶点数各面内角和,因为四棱锥有5个顶点,5个面,分别为4个三角形和1个四边形,所以任意四棱锥的总曲率为,故②正确;③设每个面记为边形,则所有的面角和为,根据定义可得该类多面体的总曲率为常数,故③正确.故选:D.6、B【解析】根据“拐点”的概念可判断函数的对称中心,进而求解.【详解】,,,令,解得:,而,故函数关于点对称,,,故选:B.7、C【解析】分两种情况讨论:两个氧原子相同、两个氧原子不同,分别计算出两种情况下二氧化碳分子的个数,利用分类加法计数原理可得结果.【详解】分以下两种情况讨论:若两个氧原子相同,此时二氧化碳分子共有种;若两个氧原子不同,此时二氧化碳分子共有种.由分类加法计数原理可知,由上述同位素可构成的不同二氧化碳分子共有种.故选:C.8、D【解析】由题意可证平面,取BD的中点F,连接EF,则为直线与所成的角,利用余弦定理求出,根据三棱锥体积公式即可求得体积【详解】如图,∵,点为的中点,∴,,∵,,两两垂直,,∴平面,取BD的中点F,连接EF,∴为直线与所成的角,且,由题意可知,,设,连接AF,则,在中,由余弦定理,得,即,解得,即∴三棱锥的体积故选:9、A【解析】根据(为弦长,为圆半径,为圆心到直线的距离),求解出的关系式,结合求解出离心率的值.【详解】取的一条渐近线,因为(为弦长,为圆半径,为圆心到直线的距离),其中,所以,所以,所以,所以,所以,故选:A.【点睛】关键点点睛:解答本题的关键是利用几何法表示出圆的半径、圆心到直线的距离、半弦长之间的关系.10、C【解析】先令代入中,求得,再根据递推式得到,将与已知相减,可判断数列是等比数列,进而确定,求得答案.【详解】因为,令,则,又,故,即,故数列是等比数列,则,所以,所以,故选:C.11、B【解析】由题意判断椭圆焦点在轴上,则,解方程即可确定的值.【详解】有题意知:焦点在轴上,则,从而,解得:.故选:B.12、B【解析】利用圆心到直线距离等于半径得到方程,解出的值.【详解】圆心为,半径为,由题意得:,解得:或6.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、4【解析】根据对数的运算性质得,可得,即数列是以2为公比的等比数列,代入等比数列的通项公式化简可得值.【详解】因为,所以,即数列是以2为公比的等比数列,所以.故答案为:4.【点睛】本题考查等比数列的定义和通项公式以及对数的运算性质,熟练运用相应的公式即可,属于基础题.14、##【解析】利用列举法,结合古典概型概率计算公式以及对数的知识求得正确答案.【详解】的所有可能取值为,,共种,满足的为,,共种,所以的概率为.故答案为:15、【解析】作出该不等式表示的平面区域,由的几何意义结合距离公式得出答案.【详解】该不等式组表示的平面区域,如下图所示过点作直线的垂线,垂足为因为表示原点与可行域中点之间的距离,所以的最小值为.故答案为:16、6【解析】根据两圆的公共弦过圆的圆心即可获解【详解】两圆相减得公共弦所在的直线方程为由题知两圆的公共弦过圆的圆心,所以即,又,所以到直线的距离所以直线被圆所截得的弦长为故答案为:6三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、【解析】利用复合命题的真假推出两个命题为一真一假,求出m的范围即可.【详解】:方程有两个不等的负实数根,解得,:方程无实数根,解得,所以:,:或.因为为真命题,为假命题,所以真假,或假真.(1)当真假时,即真为真,所以,解得;(2)当假真时,即真为真,所以,解得.综上,取值范围为18、(1)存在,为的中点,证明见解析;(2).【解析】(1)取的中点,的中点,连接,,,证明,由线面平行的判定定理即可求证;(2)先证明平面面,过点作于点,即可证明面,在中,利用面积公式求出即为四棱锥的高,再由棱锥的体积公式即可求解.【详解】(1)线段上存在点使得平面,为的中点.证明如下:如图取的中点,的中点,连接,,,因为,分别为,的中点,所以且因为且,所以,且,所以四边形为平行四边形,可得,因为面,面,所以平面;(2)过点作于点,因为平面,面,所以平面面,因为,面,平面面,所以面,因为,,所以,,所以,即,所以,即为四棱锥的高,所以.19、(1)单调递增区间,无递减区间;(2)证明见解析【解析】(1)求出函数的导数,从而判断其正负,确定函数的单调区间;(2)根据题意可得到,进而变形为,然后换元令,将证明的问题转换为成立的问题,从而构造新函数,求新函数的导数,判断其单调性,求其最值,进而证明不等式成立.【小问1详解】时,,,令,当时,,当时,,故,则,故是单调递增函数,即的单调递增区间为,无递减区间;【小问2详解】当时,函数有两个零点,,满足,即,所以,则,令,由于,则,则x2=tx故,要证明,只需证明,即证,设,令,则,当时,,即在时为增函数,故,即,所以在时为增函数,即,即,故,即.【点睛】本题考查了利用导数求函数的单调区间以及涉及到零点的不等式的证明问题,解答时要注意导数的应用,主要是根据导数的正负判断函数的单调性,进而求函数极值或最值,解答的关键时对函数式或者不等式进行合理的变形,进而能构造新的函数,利用新的函数的单调性或最值达到证明不等式成立的目的m.20、(1)证明见解析(2)【解析】(1)利用正弦定理结合两角和的正弦公式求出的值,结合角的取值范围可求得角的值,可求得的值,即可证得结论成立;(2)利用三角形的面积公式可求得的值,结合余弦定理可求得的值,进而可求得的周长.【小问1详解】证明:由正弦定理及,得,所以,,所以,,,则,所以,,又,,,因此,、、成等差数列.【小问2详解】解:,,又,,故的周长为.21、(1)(2)【解析】(1)令,则,根据二次函数的性质即可求出;(2)令,方程化为,求出的变化情况即可求出.【小问1详解】令,则,则题目等价于在的最大值为9,最小值为1,对称轴,开口向上,则,解得;【小问2详解】令,则,于是方程可变为,即,因为函数在单调递减,在单调递增,且,要使方程有两个不同的解,则与有两个不同的交点,所以.22、(1);(2)见解析;(3).【解析】(1)根据在处取极值可得,可求得,验证可知满足题意;根据导数的几何意义求得切线斜率,利用点斜式可求得切线方程;(2)求导后,分别在和两种情况下讨论导函数的符号,从而得到的单调性;(3)根据在上无零点可知在上的最大值和最小值符号一致;分别在,两种情况下根据函数的单调性求解最大值和最小值,利用符号一致构造不等式求得结果.【详解】(1)由题意得:在处取极值,解得:则当时,,单调递减;当时,,单调递增为极小值点,满足题意函数当时,由得:在处的切线方程为:,即:(2)由题意知:函数的定义域为,①当时若,恒成立,恒成立在内单调递减②当时由,得:;由得:在内单调
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医学科研单位合规自查实施方案
- 特殊教育机构家长委员会发展方案
- 为电影场景或电影摄影棚出租照明器具行业相关项目经营管理报告
- 机器马达和引擎调速器产品供应链分析
- 隧道工程泥浆护壁施工方案
- 羽毛球网市场发展前景分析及供需格局研究预测报告
- 拖拉机抵押合同范本(2篇)
- 2024土工布供需合同模板
- 防事故用绝缘手套项目运营指导方案
- 房屋买卖定金合同协议书范本详细版(2篇)
- 经济学题库(200道)
- 2024年巴西私人安保服务市场机会及渠道调研报告
- 课《闻王昌龄左迁龙标遥有此寄》跨学科公开课一等奖创新教学设计
- 2024年江苏省连云港市中考英语真题(含解析)
- 2024-2030年国内婴童用品行业深度分析及竞争格局与发展前景预测研究报告
- 粤教粤民版《劳动技术》四上 第二单元第3课《提篮》教学设计
- 办公楼室内装饰工程施工设计方案技术标范本
- 全球及中国玉米淀粉行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告(2024-2030)
- 部编版小学语文三年级上册基础知识试题含答案(全册)
- S7-1200PLC技术及应用 课件 项目17 步进电机控制
- 2024年中国老年糖尿病诊疗指南解读(2024年版)
评论
0/150
提交评论