2024届贵州省凤冈县第二中学数学高二上期末联考试题含解析_第1页
2024届贵州省凤冈县第二中学数学高二上期末联考试题含解析_第2页
2024届贵州省凤冈县第二中学数学高二上期末联考试题含解析_第3页
2024届贵州省凤冈县第二中学数学高二上期末联考试题含解析_第4页
2024届贵州省凤冈县第二中学数学高二上期末联考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届贵州省凤冈县第二中学数学高二上期末联考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若关于x的不等式的解集为,则关于x的不等式的解集是()A. B.,或C.,或 D.,或,或2.若关于一元二次不等式的解集为,则实数的取值范围是()A. B.C. D.3.直线的斜率为()A.135° B.45°C.1 D.-14.已知a,b为正数,,则下列不等式一定成立的是()A. B.C. D.5.函数f(x)=的图象大致形状是()A. B.C. D.6.已知抛物线的方程为,则此抛物线的准线方程为()A. B.C. D.7.已知正方形的四个顶点都在椭圆上,若的焦点F在正方形的外面,则的离心率的取值范围是()A. B.C. D.8.已知函数,则()A. B.0C. D.19.已知两定点和,动点在直线上移动,椭圆C以A,B为焦点且经过点P,则椭圆C的短轴的最小值为()A. B.C. D.10.已知抛物线:,焦点为,若过的直线交抛物线于、两点,、到抛物线准线的距离分别为3、7,则长为A.3 B.4C.7 D.1011.甲乙两名运动员在某项体能测试中的6次成绩统计如表:甲9816151514乙7813151722分别表示甲乙两名运动员这项测试成绩的平均数,分别表示甲乙两名运动员这项测试成绩的标准差,则有()A., B.,C., D.,12.过点P(2,1)作直线l,使l与双曲线-y2=1有且仅有一个公共点,这样的直线l共有A.1条 B.2条C.3条 D.4条二、填空题:本题共4小题,每小题5分,共20分。13.数列的前项和为,则该数列的通项公式___________14.在正三棱柱中,,点P满足,其中,,则下列说法中,正确的有_________(请填入所有正确说法的序号)①当时,的周长为定值②当时,三棱锥的体积为定值③当时,有且仅有一个点P,使得④当时,有且仅有一个点P,使得平面15.直线与直线垂直,则______16.曲线在点处的切线的方程为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆C:的左右焦为,,点是该椭圆上任意一点,当轴时,,(1)求椭圆C的标准方程;(2)记,求实数m的最大值18.(12分)在等差数列中,,.(1)求数列的通项公式;(2)求数列的前n项和.19.(12分)如图,在空间四边形中,分别是的中点,分别在上,且(1)求证:四点共面;(2)设与交于点,求证:三点共线.20.(12分)有三个条件:①数列的任意相邻两项均不相等,,且数列为常数列,②,③,,中,从中任选一个,补充在下面横线上,并回答问题已知数列的前n项和为,______,求数列的通项公式和前n项和21.(12分)年月日,中国选手杨倩在东京奥运会女子米气步枪决赛由本得冠军,为中国代表团揽入本届奥运会第一枚金牌.受奥运精神的鼓舞,某射击俱乐部组织名射击爱好者进行一系列的测试,并记录他们的射击得分(单位:分),将所得数据整理得到如图所示的频率分布直方图.(1)求频率分布直方图中的值,并估计该名射击爱好者的射击平均得分(求平均值时同一组数据用该组区间的中点值作代表);(2)若采用分层抽样的方法,从得分高于分的射击爱好者中随机抽取人调查射击技能情况,再从这人中随机选取人进行射击训练,求这人中至少有人的分数高于分的概率.22.(10分)如图,点分别在射线,上运动,且(1)求;(2)求线段的中点M的轨迹C的方程;(3)直线与,轨迹C及自上而下依次交于D,E,F,G四点,求证:

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】先利用已知一元二次不等式的解集求得参数,再代入所求不等式,利用分式大于零,则分子分母同号,列不等式计算即得结果.【详解】不等式解集为,即的二根是1和2,利用根和系数的关系可知,故不等式即转化成,即,等价于或者,解得或,或者.故解集为,或,或.故选:D.【点睛】分式不等式的解法:(1)先化简成右边为零的形式(或),等价于一元二次不等式(或)再求解即可;(2)先化简成右边为零的形式(或),再利用分子分母同号(或者异号),列不等式组求解即可.2、B【解析】结合判别式求得的取值范围.【详解】由于关于的一元二次不等式的解集为,所以,解得,所以实数的取值范围是.故选:B3、D【解析】由斜截式直接看出直线斜率.【详解】由题意得:直线斜率为-1,故选:D4、A【解析】构造新函数,以函数单调性把不等式转化为整式不等式即可解决.【详解】不等式可化为:令,则则函数为单调增函数.由可得故选:A5、B【解析】利用函数的奇偶性排除选项A,C,然后利用特殊值判断即可【详解】解:由题得函数的定义域为,关于原点对称.所以函数是奇函数,排除选项A,C.当时,,排除选项D,故选:B6、A【解析】由抛物线的方程直接写出其准线方程即可.【详解】由抛物线的方程为,则其准线方程为:故选:A7、C【解析】如图由题可得,进而可得,即求.【详解】如图根据对称性,点D在直线y=x上,可设,则,∴,可得,,即,又解得.故选:C.8、B【解析】先求导,再代入求值.详解】,所以.故选:B9、B【解析】根据题意,点关于直线对称点的性质,以及椭圆的定义,即可求解.【详解】根据题意,设点关于直线的对称点,则,解得,即.根据椭圆的定义可知,,当、、三点共线时,长轴长取最小值,即,由且,得,因此椭圆C的短轴的最小值为.故选:B.10、D【解析】利用抛物线的定义,把的长转化为点到准线的距离的和得解【详解】解:抛物线:,焦点为,过的直线交抛物线于、两点,、到抛物线准线的距离分别为3、7,则故选D【点睛】本题考查抛物线定义的应用,意在考查学生对该知识的理解掌握水平和分析推理能力.11、B【解析】根据给定统计表计算、,再比较、大小判断作答.【详解】依题意,,,,,所以,.故选:B12、B【解析】利用几何法,结合双曲线的几何性质,得出符合条件的结论.【详解】由双曲线的方程可知其渐近线方程为y=±x,则点P(2,1)在渐近线y=x上,又双曲线的右顶点为A(2,0),如图所示.满足条件的直线l有两条:x=2,y-1=-(x-2)【点睛】该题考查的是有关直线与双曲线的公共点有一个的条件,结合双曲线的性质,结合图形,得出结果,属于中档题目.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据与关系求解即可.【详解】当时,,当时,,检验:,所以.故答案为:14、②④【解析】①结合得到P在线段上,结合图形可知不同位置下周长不同;②由线面平行得到点到平面距离不变,故体积为定值;③结合图形得到不同位置下有,判断出③错误;④结合图形得到有唯一的点P,使得线面垂直.【详解】由题意得:,,,所以P为正方形内一点,①,当时,,即,,所以P在线段上,所以周长为,如图1所示,当点P在处时,,故①错误;②,如图2,当时,即,即,,所以P在上,,因为∥BC,平面,平面,所以点P到平面距离不变,即h不变,故②正确;③,当时,即,如图3,M为中点,N为BC的中点,P是MN上一动点,易知当时,点P与点N重合时,由于△ABC为等边三角形,N为BC中点,所以AN⊥BC,又⊥BC,,所以BN⊥平面,因为平面,则,当时,点P与点M重合时,可证明出⊥平面,而平面,则,即,故③错误;④,当时,即,如图4所示,D为的中点,E为的中点,则P为DE上一动点,易知,若平面,只需即可,取的中点F,连接,又因为平面,所以,若,只需平面,即即可,如图5,易知当且仅当点P与点E重合时,故只有一个点P符合要求,使得平面,故④正确.故选:②④【点睛】立体几何的压轴题,通常情况下要画出图形,利用线面平行,线面垂直及特殊点,特殊值进行排除选项,或者用等体积法进行转化等思路进行解决.15、##【解析】根据两直线垂直得,即可求出答案.【详解】由直线与直线垂直得,.故答案为:.16、【解析】求出导函数,得切线斜率后可得切线方程【详解】,∴切线斜率为,切线方程为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用椭圆的定义及勾股定理可求解;(2)问题转化为在轴截距的问题,临界条件为直线与椭圆相切,求解即可.【小问1详解】因为,,所以,∴,所以椭圆标准方程为:【小问2详解】要求的最值,即求直线在轴截距的最值,可知当直线与椭圆相切时,m取得最值.联立方程:,整理得,解得所以实数m的最大值为18、(1)(2)【解析】(1)根据已知条件求得,由此求得数列的通项公式.(2)令,分和去掉绝对值,根据等差数列的求和公式求得.【小问1详解】设等差数列的公差为,∵,,所以,所以,则.【小问2详解】令,解得,当时,,,当时,.19、(1)证明见解析;(2)证明见解析.【解析】(1)根据题意,利用中位线定理和线段成比例,先证明,进而证明问题;(2)先证明平面,平面,进而证明点P在两个平面的交线上,然后证得结论.【小问1详解】连接分别是的中点,.在中,.所以四点共面.【小问2详解】,所以,又平面平面,同理:,平面平面,为平面与平面的一个公共点.又平面平面,即三点共线.20、;【解析】选①,由数列为常数列可得,由此可求,根据任意相邻两项均不相等可得,由此证明数列为等比数列,并求出数列的通项公式,利用分组求和法求数列的前n项和为,选②由取可求,再取与原式相减可得,由此证明数列为等比数列,并求出数列的通项公式,利用分组求和法求数列的前n项和为,选③由取与原式相减可得,取可求,由此可得,故,由此证明数列为等比数列,并求出数列的通项公式,利用分组求和法求数列的前n项和为,【详解】解:选①:因为,数列为常数列,所以,解得或,又因为数列的任意相邻两项均不相等,且,所以数列为2,-1,2,-1,2,-1……,所以,即,所以,又,所以是以为首项,公比为-1的等比数列,所以,即;所以选②:因为,易知,,所以两式相减可得,即,以下过程与①相同;选③:由,可得,又,时,,所以,因为,所以也满足上式,所以,即,以下过程与①相同21、(1),平均分为;(2).【解析】(1)利用频率直方图中所有矩形面积之和为可求得的值,将每个矩形底边的中点值乘以对应矩形的面积,将所得结果全部相加可得平均成绩;(2)分析可知所抽取的人中,成绩在内的有人,分别记为、、、,成绩在内的有人,分别记为、,列举出所有的基本事件,并确定所求事件所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【小问1详解】解:根据频率分布直方图得到,解得.这组样本数据平均数为.【小问2详解】解:根据频率分布直方图得到,分数在、内的频率分别为、,所以采用分层抽样的方法从样本中抽取的人,成绩在内的有人,分别记为、、、,成绩在内的有人,分别记为、,记“人中至少有人的分数高于分”为事件.则所有的基本事件有、、、、、、、、、、、、、、,共种.事件包含的基本事件有、、、、、、、、,共种,所以.22、(1)2(2)(3)证明见详解【解析】(1)用两点间的距离公式和三角形的面积公式,结合已知直接可解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论