版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省岭南师院附中东方实验学校数学高二上期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线,若异面,,则的位置关系是()A.异面 B.相交C.平行或异面 D.相交或异面2.随着城市生活节奏的加快,网上订餐成为很多上班族的选择,下表是某外卖骑手某时间段订餐数量与送餐里程的统计数据表:订餐数/份122331送餐里程/里153045现已求得上表数据的回归方程中的值为1.5,则据此回归模型可以预测,订餐100份外卖骑手所行驶的路程约为()A.155里 B.145里C.147里 D.148里3.已知椭圆:的左、右焦点分别为、,为坐标原点,为椭圆上一点.与轴交于一点,,则椭圆C的离心率为()A. B.C. D.4.双曲线的渐近线方程和离心率分别是A. B.C. D.5.定义在R上的偶函数在上单调递增,且,则满足的x的取值范围是()A. B.C. D.6.已知命题对任意,总有;是方程的根则下列命题为真命题的是A. B.C. D.7.设等差数列,的前n项和分别是,,若,则()A. B.C. D.8.过双曲线右焦点F作双曲线一条渐近线的垂线,垂足为A,与另一条渐近线交于点B,若,则双曲线C的离心率为()A.或 B.2或C.或 D.2或9.已知等比数列的前n项和为,,,则()A. B.C. D.10.已知函数在处取得极小值,则()A. B.C. D.11.中国农历的二十四节气是中华民族的智慧与传统文化的结晶,二十四节气歌是以春、夏、秋、冬开始的四句诗.在国际气象界,二十四节气被誉为“中国的第五大发明”.2016年11月30日,二十四节气被正式列入联合国教科文组织人类非物质文化遗产代表作名录.某小学三年级共有学生600名,随机抽查100名学生并提问二十四节气歌,只能说出一句的有45人,能说出两句及以上的有38人,据此估计该校三年级的600名学生中,对二十四节气歌一句也说不出的有()A.17人 B.83人C.102人 D.115人12.2013年9月7日,总书记在哈萨克斯坦纳扎尔巴耶夫大学发表演讲在谈到环境保护问题时提出“绿水青山就是金山银山”这一科学论新.某市为了改善当地生态环境,2014年投入资金160万元,以后每年投入资金比上一年增加20万元,从2021年开始每年投入资金比上一年增加10%,到2024年底该市生态环境建设投资总额大约为()(其中,,)A.2559万元 B.2969万元C.3005万元 D.3040万元二、填空题:本题共4小题,每小题5分,共20分。13.《周髀算经》是中国最古老的天文学和数学著作,书中提到:从冬至之日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列,若冬至、立春、春分的日影子长的和是37.5尺,芒种的日影子长为4.5尺,则立夏的日影子长为___________尺.14.若直线与直线平行,且原点到直线的距离为,则直线的方程为____________.15.已知曲线的焦距是10,曲线上的点到一个焦点的距离是2,则点到另一个焦点的距离为__________.16.已知是等差数列,,,设,数列前n项的和为,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点A(,0),点C为圆B:(B为圆心)上一动点,线段AC的垂直平分线与直线BC交于点G(1)设点G的轨迹为曲线T,求曲线T的方程;(2)若过点P(m,0)()作圆O:的一条切线l交(1)中的曲线T于M、N两点,求△MNO面积的最大值18.(12分)如图,在三棱锥中,,平面,,分别为棱,的中点.(1)求证:;(2)若,,二面角的大小为,求三棱锥的体积.19.(12分)已知椭圆的右焦点为,且经过点.(1)求椭圆的标准方程;(2)设椭圆的左顶点为,过点的直线(与轴不重合)交椭圆于两点,直线交直线于点,若直线上存在另一点,使.求证:三点共线.20.(12分)如图,在三棱锥中,,,为的中点(1)证明:平面;(2)若点在棱上,且二面角为,求与平面所成角正弦值.21.(12分)如图1,已知矩形中,,E为上一点且.现将沿着折起,使点D到达点P的位置,且,得到的图形如图2.(1)证明为直角三角形;(2)设动点M在线段上,判断直线与平面位置关系,并说明理由.22.(10分)已知椭圆:的左、右焦点分别为,,过点的直线l交椭圆于A,两点,的中点坐标为.(1)求直线l的方程;(2)求的面积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】以正方体为载体说明即可.【详解】如下图所示的正方体:和是异面直线,,;和是异面直线,,与是异面直线.所以两直线与是异面直线,,则的位置关系是相交或异面.故选:D2、C【解析】由统计数据求样本中心,根据样本中心在回归直线上求得,即可得回归方程,进而估计时的y值即可.【详解】由题意:,,则,可得,故,当时,.故选:C3、C【解析】由椭圆的性质可先求得,故可得,再由椭圆的定义得a,c的关系,故可得答案【详解】,,又,,则,,则,,由椭圆的定义得,,,故选:C4、A【解析】先根据双曲线的标准方程,求得其特征参数的值,再利用双曲线渐近线方程公式和离心率定义分别计算即可.【详解】双曲线的,双曲线的渐近线方程为,离心率为,故选A.【点睛】本题主要考查双曲线的渐近线及离心率,属于简单题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解5、B【解析】,再根据函数的奇偶性和单调性可得或,解之即可得解.【详解】解:,由题意可得或即或,解得或故选:B.6、A【解析】由绝对值的意义可知命题p为真命题;由于,所以命题q为假命题;因此为假命题,为真命题,“且”字联结的命题只有当两命题都真时才是真命题,所以答案选A7、B【解析】利用求解.【详解】解:因为等差数列,的前n项和分别是,所以.故选:B8、D【解析】求得点A,B的坐标,利用转化为坐标比求解.【详解】不妨设直线,由题意得,解得,即;由得,即,因为,所以,所以当时,,;当时,,则,故选:D9、A【解析】由,可得等比数列公比q=2,利用等比数列求和公式和通项公式即可求.【详解】设等比数列的公比为q,则,.故选:A.10、A【解析】由导数与极值与最值的关系,列式求实数的值.【详解】由条件可知,,,解得:,,检验,时,当,得或,函数的单调递增区间是和,当,得,所以函数的单调递减区间是,所以当时,函数取得极小值,满足条件.所以.故选:A11、C【解析】根据频率计算出正确答案.【详解】一句也说不出的学生频率为,所以估计名学生中,一句也说不出的有人.故选:C12、B【解析】前7年投入资金可看成首项为160,公差为20的等差数列,后4年投入资金可看成首项为260,公比为1.1的等比数列,分别求和,即可求出所求【详解】2014年投入资金160万元,以后每年投入资金比上一年增加20万元,成等差数列,则2020年投入资金万元,年共7年投资总额为,从2021年开始每年投入资金比上一年增加,则从2021年到2024年投入资金成首项为,公比为1.1,项数为4的等比数列,故从2021年到2024年投入总资金为,故到2024年底该市生态环境建设投资总额大约为万元故选:二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用等差数列的通项公式求出首项和公差,然后求出其中某一项.【详解】解:由题意得从冬至之日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列,设其公差为,解得故立夏的日影子长为尺.故答案为:14、【解析】可设直线的方程为,利用点到直线的距离公式求得,即可得解.【详解】可设直线的方程为,即,则原点到直线的距离为,解得,所以直线的方程为.故答案为:.15、或10.【解析】对参数a进行讨论,考虑曲线是椭圆和双曲线的情况,进而结合椭圆与双曲线的定义和性质求得答案.【详解】由题意,曲线的半焦距为5,若曲线是焦点在x轴上的椭圆,则a>16,所以,而椭圆上的点到一个焦点距离是2,则点到另一个焦点的距离为;若曲线是焦点在y轴上的椭圆,则0<a<16,所以,舍去;若曲线是双曲线,则a<0,容易判断双曲线的焦点在y轴,所以,不妨设点P在双曲线的上半支,上下焦点分别为,因为实半轴长为4,容易判断点P到下焦点的距离的最小值为4+5=9>2,不合题意,所以点P到上焦点的距离为2,则它到下焦点的距离.故答案为:或10.16、-3033【解析】先求得,进而得到,再利用并项法求解.【详解】解:因为是等差数列,且,,所以,解得,所以,则,所以,,,,.故答案为:-3033三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)1【解析】(1)可由题意,点G在线段AC的垂直平分线上,,可利用椭圆的定义,得到点G的轨迹为椭圆,然后利用已知的长度关系求解出椭圆方程;(2)可通过设l的方程,利用l是圆O的切线,通过点到直线的距离得到一组等量关系,然后将直线与椭圆联立方程,计算弦长,表示出△MNO面积的表达式,将上面得到的等量关系代入利用基本不等式即可求解出最值.【小问1详解】依题意有,,即G点轨迹是以A,B为焦点的椭圆,设椭圆方程为由题意可知,,则,,所以曲线T的方程为【小问2详解】设,,设直线l的方程为,因为直线l与圆相切,所以,即,联立直线l与椭圆的方程,整理得,,由韦达定理可得,,所以,又点O到直线l的距离为1,所以当且仅当,即时,取等号,所以的面积的最大值为118、(1)证明见解析;(2).【解析】(1)利用线面垂直的判定定理及性质即证;(2)利用坐标法,结合条件可求,然后利用体积公式即求.【小问1详解】,是的中点,,平面,平面,,又,平面,平面,;【小问2详解】,,,取的中点,连接,则,平面,以为坐标原点,分别以、、所在直线为、、轴建立空间直角坐标系,设,则,,,,,,,,设平面的一个法向量为,由,取,得;设平面的一个法向量为,由,取,得,∵二面角的大小为,,解得,,则三棱锥的体积.19、(1);(2)证明见解析.【解析】(1)根据给定条件利用椭圆的定义求出轴长即可计算作答.(2)根据给定条件设出的方程,与椭圆C的方程联立,求出直线PA的方程并求出点M的坐标,求出点N的坐标,再利用斜率推理作答.【小问1详解】依题意,椭圆的左焦点,由椭圆定义得:即,则,所以椭圆的标准方程为.【小问2详解】由(1)知,,直线不垂直y轴,设直线方程为,,由消去x得:,则,,直线的斜率,直线的方程:,而直线,即,直线的斜率,而,即,直线的斜率,直线的方程:,则点,直线的斜率,直线的斜率,,而,即,所以三点共线.【点睛】思路点睛:解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x(或y)建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系20、(1)证明见解析;(2).【解析】(1)根据等腰三角形性质得PO垂直AC,再通过计算,根据勾股定理得PO垂直OB,最后根据线面垂直判定定理得结论;(2)根据条件建立空间直角坐标系,设立各点坐标,根据方程组解出平面PAM一个法向量,利用向量数量积求出两个法向量夹角,根据二面角与法向量夹角相等或互补关系列方程,解得M坐标,再利用向量数量积求得向量PC与平面PAM法向量夹角,最后根据线面角与向量夹角互余得结果【详解】(1)因为,为的中点,所以,且连结因为,所以为等腰直角三角形,且由知由知平面(2)如图,以为坐标原点,的方向为轴正方向,建立空间直角坐标系由已知得取平面的法向量设,则设平面的法向量为由得,可取所以.由已知得所以.解得(舍去),所以又,所以所以与平面所成角的正弦值为【点睛】利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”21、(1)证明见解析(2)答案不唯一,见解析【解析】(1)利用折叠前后的线段长度及勾股定理求证即可;(2)动点M满足时和,但时两种情况,利用线线平行或相交得到结论.【小问1详解】在折叠前的图中,如图:,E为上一点且,则,折叠后,所以,又,所以,所以为直角三角形.小问2详解】当动点M在线段上,满足,同样在线段上取,使得,则,当时,则,又且所以,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江苏省泰州市姜堰区2024-2025学年七年级上学期期中生物试题(含答案)
- 2024年度云南省高校教师资格证之高等教育法规综合练习试卷B卷附答案
- 安徽省合肥市2024-2025学年九年级上学期期中物理模拟试卷二(含答案)
- 阜阳师范大学《战略管理》2023-2024学年第一学期期末试卷
- 阜阳师范大学《幼儿歌曲弹唱二》2022-2023学年第一学期期末试卷
- 阜阳师范大学《投资学专业导论》2021-2022学年第一学期期末试卷
- 2023年高密度聚乙烯土工膜投资申请报告
- 福建师范大学协和学院《跨境电子商务理论与实务》2021-2022学年第一学期期末试卷
- 福建师范大学《运动技能学习与控制》2022-2023学年第一学期期末试卷
- 2024年二级建造师-法规-学霸笔记
- 如何搞定你的客户-
- 宁夏特色美食文化介绍推介PPT图文课件
- 学生对学校满意度评价表
- 压缩机辅助系统试运
- 环磷酰胺原料药相关项目投资计划书
- 部编版语文四年级上册第五单元【集体备课】
- 职高新思政-第五课:推动高质量发展
- 天然气超声波脱水技术
- 机械制造课程设计-《机械制造工艺学》课程设计
- 疲劳驾驶安全教育内容
- 静脉留置针护理ppt(完整版)
评论
0/150
提交评论