版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年山西省范亭中学数学高二上期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.命题“若,则”为真命题,那么不可能是()A. B.C. D.2.已知平面的一个法向量为,且,则点A到平面的距离为()A. B.C. D.13.若直线与曲线有两个公共点,则实数的取值范围为()A. B.C. D.4.已知平面,的法向量分别为,,且,则()A. B.C. D.5.等比数列中,,则()A. B.C.2 D.46.“”是“直线:与直线:平行”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.设等差数列的前项和为,若,则的值为()A.28 B.39C.56 D.1178.椭圆焦距为()A. B.8C.4 D.9.2018年,伦敦著名的建筑事务所steynstudio在南非完成了一个惊艳世界的作品一一双曲线建筑的教堂,白色的波浪形屋顶像翅膀一样漂浮,建筑师通过双曲线的设计元素赋予了这座教堂轻盈,极简和雕塑般的气质,如图.若将此大教堂外形弧线的一段近似看成焦点在y轴上的双曲线下支的一部分,且该双曲线的上焦点到下顶点的距离为18,到渐近线距离为12,则此双曲线的离心率为()A. B.C. D.10.下列双曲线中,以为一个焦点,以为一个顶点的双曲线方程是()A. B.C. D.11.如图所示,某空间几何体的三视图是3个全等的等腰直角三角形,且直角边长为2,则该空间几何体的体积为()A. B.C. D.12.设数列的前项和为,若,,,则、、、中,最大的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.记为等差数列的前n项和.若,则__________14.已知数列是等差数列,,公差,为其前n项和,满足,则当取得最大值时,______15.若不等式的解集为,则________16.某学生到某工厂进行劳动实践,利用打印技术制作模型.如图,该模型为一个大圆柱中挖去一个小圆柱后的剩余部分(两个圆柱底面圆的圆心重合),大圆柱的轴截面是边长为的正方形,小圆柱的侧面积是大圆柱侧面积的一半,打印所用原料的密度为,不考虑打印损耗,制作该模型所需原料的质量为________g.(取)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点,椭圆:离心率为,是椭圆的右焦点,直线的斜率为,为坐标原点.设过点的动直线与相交于,两点(1)求椭圆的方程(2)是否存在直线,使得的面积为?若存在,求出的方程;若不存在,请说明理由18.(12分)已知函数(1)讨论的单调区间;(2)求在上的最大值.19.(12分)已知椭圆:的四个顶点组成的四边形的面积为,且经过点.(1)求椭圆的方程;(2)若椭圆的下顶点为,如图所示,点为直线上的一个动点,过椭圆的右焦点的直线垂直于,且与交于,两点,与交于点,四边形和的面积分别为,,求的最大值.20.(12分)已知抛物线的焦点为,点为抛物线上一点,且.(1)求抛物线方程;(2)直线与抛物线相交于两个不同的点,为坐标原点,若,求实数的值;21.(12分)已知数列的前项和为,并且满足(1)求数列的通项公式;(2)若,数列的前项和为,求证:22.(10分)已知函数(Ⅰ)若的图象在点处的切线与轴负半轴有公共点,求的取值范围;(Ⅱ)当时,求的最值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据命题真假的判断,对四个选项一一验证即可.【详解】对于A:若,则必成立;对于B:若,则必成立;对于C:若,则必成立;对于D:由不能得出,所以不可能是.故选:D2、B【解析】直接由点面距离的向量公式就可求出【详解】∵,∴,又平面的一个法向量为,∴点A到平面的距离为故选:B3、D【解析】由题可知,曲线表示一个半圆,结合半圆的图像和一次函数图像即可求出的取值范围.【详解】由得,画出图像如图:当直线与半圆O相切时,直线与半圆O有一个公共点,此时,,所以,由图可知,此时,所以,当直线如图过点A、B时,直线与半圆O刚好有两个公共点,此时,由图可知,当直线介于与之间时,直线与曲线有两个公共点,所以.故选:D.4、D【解析】由题得,解方程即得解.【详解】解:因为,所以所以,所以,所以.故选:D5、D【解析】利用等比数列的下标特点,即可得到结果.【详解】∵,∴,∴,∴.故选:D6、C【解析】根据两直线平行求得的值,由此确定充分、必要条件.【详解】由于,所以,当时,两直线重合,不符合题意,所以.所以“”是“直线:与直线:平行”的充要条件.故选:C7、B【解析】由已知结合等差数列的求和公式及等差数列的性质即可求解.【详解】因为等差数列中,,则.故选:B.8、A【解析】由题意椭圆的焦点在轴上,故,求解即可【详解】由题意,,故椭圆的焦点在轴上故焦距故选:A9、A【解析】设出双曲线的方程,根据已知条件列出方程组即可求解.【详解】设双曲线的方程为,由双曲线的上焦点到下顶点的距离为18,即,上焦点的坐标为,其中一条渐近线为,上焦点到渐近线的距离为,则,解得,,即,故选:.10、C【解析】设出双曲线方程,根据题意,求得,即可选择.【详解】因为双曲线的一个焦点是,故可设双曲线方程为,且;又为一个顶点,故可得,解得,则双曲线方程为:.故选:.11、A【解析】在该空间几何体的直观图中去求其体积即可.【详解】依托棱长为2的正方体得到该空间几何体的直观图为三棱锥则故选:A12、C【解析】求出的表达式,解不等式可得结果.【详解】由已知可得,故数列为等差数列,且公差为,所以,,令可得.因此,当时,最大.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】因为是等差数列,根据已知条件,求出公差,根据等差数列前项和,即可求得答案.【详解】是等差数列,且,设等差数列的公差根据等差数列通项公式:可得即:整理可得:解得:根据等差数列前项和公式:可得:.故答案:.【点睛】本题主要考查了求等差数列的前项和,解题关键是掌握等差数列的前项和公式,考查了分析能力和计算能力,属于基础题.14、9或10【解析】等差数列通项公式的使用.【详解】数列是等差数列,且,得,得,则有,又因为,公差,所以或10时,取得最大值故答案为:9或1015、11【解析】根据题意得到2与3是方程的两个根,再根据两根之和与两根之积求出,进而求出答案.【详解】由题意得:2与3是方程的两个根,则,,所以.故答案为:1116、4500【解析】根据题意可知大圆柱的底面圆的半径,两圆柱的高,设小圆柱的底面圆的半径为,再根据小圆柱的侧面积是大圆柱侧面积的一半,求出小圆柱的底面圆的半径,然后求出该模型的体积,从而可得出答案.【详解】解:根据题意可知大圆柱的底面圆的半径,两圆柱的高,设小圆柱的底面圆的半径为,则有,即,解得,所以该模型的体积为,所以制作该模型所需原料的质量为.故答案:4500.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)存在;或.【解析】(1)设,由,,,求得的值即可得椭圆的方程;(2)设,,直线的方程为与椭圆方程联立可得,,进而可得弦长,求出点到直线的距离,解方程,求得的值即可求解.【小问1详解】设,因为直线的斜率为,,所以,可得,又因为,所以,所以,所以椭圆的方程为【小问2详解】假设存在直线,使得的面积为,当轴时,不合题意,设,,直线的方程为,联立消去得:,由可得或,,,所以,点到直线的距离,所以,整理可得:即,所以或,所以或,所以存在直线:或使得的面积为.18、(1)①,在上单减;②,在上单增,单减;(2).【解析】(1),根据函数定义域,分,,讨论求解;(2)根据(1)知:分,,,讨论求解.【小问1详解】解:(1)定义域,①时,成立,所以在上递减;②时,当时,,当时,,所以在上单增,单减;【小问2详解】由(1)知:时,在单减,所以;时,在单减,所以;时,在上单增,上递减,所以;时,在单增,所以;综上:.19、(1)(2)【解析】(1)因为在椭圆上,所以,又因为椭圆四个顶点组成的四边形的面积为,所以,解得,所以椭圆的方程为(2)由(1)可知,设,则当时,,所以,直线的方程为,即,由得,则,,,又,所以,由,得,所以,所以,当,直线,,,,,所以当时,.点睛:在圆锥曲线中研究最值或范围问题时,若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求新参数的范围,解这类问题的关键是在两个参数之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围.20、(1)(2)【解析】(1)根据抛物线过点,且,利用抛物线的定义求解;(2)设,联立,根据,由,结合韦达定理求解.【小问1详解】解:由抛物线过点,且,得所以抛物线方程为;【小问2详解】设,联立得,,,,则,,即,解得或,又当时,直线与抛物线的交点中有一点与原点重合,不符合题意,故舍去;所以实数的值为.21、(1);(2)证明见解析.【解析】(1)利用和项可求得的通项公式,注意别漏了说明;(2)先用错位相减法求出数列的前项和,从而可知【详解】(1),①当时,,②由①—②可得:,且数列是首项为1,公差为2的等差数列,即(2)由(1)知数列,,则,①∴,②由①﹣②得,∴,.【点睛】本题主要考查给出的一个关系式求数列的通项公式以及用错位相减法求数列的前n项和.22、(Ⅰ);(Ⅱ)答案见解析.【解析】(Ⅰ)求导数.求得切线方程,由切线与轴的交点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度年福建省高校教师资格证之高等教育心理学押题练习试卷B卷附答案
- 2024年度山西省高校教师资格证之高等教育法规题库与答案
- 2024年度年福建省高校教师资格证之高等教育学能力检测试卷B卷附答案
- 2023年有机废水沼气系统投资申请报告
- 第七章 新生儿及患病新生儿的护理课件
- 五年级数学(小数四则混合运算)计算题专项练习及答案
- 体育运动教练岗位招聘面试题与参考回答2024年
- 2024年城市道路施工合作协议
- 产品代理权2024年度专享协议
- 2024专业纪实摄影师服务协议
- 统编版五年级下册期中复习阅读专项训练-阅读理解(三)(含答案+详细解析)
- 初中英语-Unit4Anoldmantriedtomovethemountains.SectionA3a-3c教学设计学情分析教材分析课后反思
- 《平均数》(课件)人教版四年级下册数学
- 《相学集存》优秀课件
- 送别怀人诗鉴赏公开课一等奖市赛课一等奖课件
- (完整版)新概念青少版1a1-10测试卷
- 秋冬季安全检查表
- 保利发展控股集团-2022-2023年房地产行业白皮书
- 土力学(二)-课件清华大学-张丙印
- 小区日常清洁服务项目投标书
- 第三章人本心理治疗
评论
0/150
提交评论