2024届安徽省安庆市市示范中学数学高二上期末经典试题含解析_第1页
2024届安徽省安庆市市示范中学数学高二上期末经典试题含解析_第2页
2024届安徽省安庆市市示范中学数学高二上期末经典试题含解析_第3页
2024届安徽省安庆市市示范中学数学高二上期末经典试题含解析_第4页
2024届安徽省安庆市市示范中学数学高二上期末经典试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽省安庆市市示范中学数学高二上期末经典试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.执行如图所示的程序框图,若输入t的取值范围为,则输出s的取值范围为()A. B.C. D.2.胡萝卜中含有大量的胡萝卜素,摄入人体消化器官后,可以转化为维生素,现从,两个品种的胡萝卜所含的胡萝卜素(单位:)得到茎叶图如图所示,则下列说法不正确的是A. B.的方差大于的方差C.品种的众数为 D.品种的中位数为3.已知球O的半径为2,球心到平面的距离为1,则球O被平面截得的截面面积为()A. B.C. D.4.已知点在抛物线的准线上,则该抛物线的焦点坐标是()A. B.C. D.5.函数的导函数为,若已知图象如图,则下列说法正确的是()A.存在极大值点 B.在单调递增C.一定有最小值 D.不等式一定有解6.已知椭圆+=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆于A、B两点.若AB的中点坐标为(1,-1),则E的方程为A.+=1 B.+=1C.+=1 D.+=17.命题“若,则”的逆命题、否命题、逆否命题中是真命题的个数为()A.0个 B.1个C.2个 D.3个8.已知:,直线l:,M为直线l上的动点,过点M作的切线MA,MB,切点为A,B,则四边形MACB面积的最小值为()A.1 B.2C. D.49.某校为了解学生学习的情况,采用分层抽样的方法从高一人、高二人、高三人中,抽取人进行问卷调查.已知高二被抽取的人数为人,那么高三被抽取的人数为()A. B.C. D.10.设等比数列的前项和为,若,,则()A.66 B.65C.64 D.6311.已知数列为等差数列,且成等比数列,则的前6项的和为A.15 B.C.6 D.312.已知为定义在R上的偶函数函数,且在单调递减.若关于的不等式在上恒成立,则实数m的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,某河流上有一座抛物线形的拱桥,已知桥的跨度米,高度米(即桥拱顶到基座所在的直线的距离).由于河流上游降雨,导致河水从桥的基座处开始上涨了1米,则此时桥洞中水面的宽度为______米14.不透明袋中装有完全相同,标号分别为1,2,3,…,8的八张卡片.从中随机取出3张.设X为这3张卡片的标号相邻的组数(例如:若取出卡片的标号为3,4,5,则有两组相邻的标号3、4和4、5,此时X的值是2).则随机变量X的数学期望______15.曲线的一条切线的斜率为,该切线的方程为________.16.已知向量,,,则___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)命题:函数有意义;命题:实数满足.(1)当且为真时,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围.18.(12分)两个顶点、的坐标分别是、,边、所在直线的斜率之积等于,顶点的轨迹记为.(1)求顶点的轨迹的方程;(2)若过点作直线与轨迹相交于、两点,点恰为弦中点,求直线的方程;(3)已知点为轨迹的下顶点,若动点在轨迹上,求的最大值.19.(12分)已知抛物线C:,直线l经过点,且与抛物线C交于M,N两点,其中.(1)若,且,求点M的坐标;(2)是否存在正数m,使得以MN为直径的圆经过坐标原点O,若存在,请求出正数m,若不存在,请说明理由.20.(12分)已知抛物线上横坐标为3的点P到焦点F的距离为4.(1)求抛物线E的方程;(2)点A、B为抛物线E上异于原点O的两不同的点,且满足.若直线AB与椭圆恒有公共点,求m的取值范围.21.(12分)已知抛物线的焦点为,点为坐标原点,直线过定点(其中,)与抛物线相交于两点(点位于第一象限.(1)当时,求证:;(2)如图,连接并延长交抛物线于两点,,设和的面积分别为和,则是否为定值?若是,求出其值;若不是,请说明理由.22.(10分)已知椭圆过点,且离心率,为坐标原点.(1)求椭圆的方程;(2)判断是否存在直线,使得直线与椭圆相交于两点,直线与轴相交于点,且满足,若存在,求出直线的方程;若不存在,请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由程序图可得,,再分段求解函数的值域,即可求解【详解】由程序图可得,当时,,,当时,,,综上所述,的取值范围为,故选:A2、C【解析】读懂茎叶图,分别计算出众数、中位数、方差,然后对各选项进行判断【详解】由茎叶图知,品种所含胡萝卜素普遍高于品种,所以,故A正确;品种的数据波动比品种的数据波动大,所以的方差大于的方差,故B正确;品种的众数为与,故C错误;品种的数据的中位数为,故D正确.故选.【点睛】本题主要考查了对数据的分析,首先要读懂茎叶图,然后计算出众数、中位数、方差,即可对各选项进行判断,较为基础3、B【解析】根据球的性质可求出截面圆的半径即可求解.【详解】由球的性质可知,截面圆的半径为,所以截面的面积.故选:B4、C【解析】首先表示出抛物线的准线,根据点在抛物线的准线上,即可求出参数,即可求出抛物线的焦点.【详解】解:抛物线的准线为因为在抛物线的准线上故其焦点为故选:【点睛】本题考查抛物线的简单几何性质,属于基础题.5、C【解析】根据图象可得的符号,从而可得的单调区间,再对选项进行逐一分析判断正误得出答案.【详解】由所给的图象,可得当时,,当时,,当时,,当时,,可得在递减,递增;在递减,在递增,B错误,且知,所以存在极小值和,无极大值,A错误,同时无论是否存在,可得出一定有最小值,但是最小值不一定为负数,故C正确,D错误.故选:C.6、D【解析】设、,所以,运用点差法,所以直线的斜率为,设直线方程为,联立直线与椭圆的方程,所以;又因为,解得.【考点定位】本题考查直线与圆锥曲线的关系,考查学生的化归与转化能力.7、B【解析】先判断出原命题和逆命题的真假,进而根据互为逆否的两个命题同真或同假最终得到答案.【详解】“若a=0,则ab=0”,命题为真,则其逆否命题也为真;逆命题为:“若ab=0,则a=0”,显然a=1,b=0时满足ab=0,但a≠0,即逆命题为假,则否命题也为假.故选:B.8、B【解析】易知四边形MACB的面积为,然后由最小,根据与直线l:垂直求解.【详解】:化为标准方程为:,由切线长得:,四边形MACB的面积为,若四边形MACB的面积最小,则最小,此时与直线l:垂直,所以,所以四边形MACB面积的最小值,故选:B9、C【解析】利用分层抽样求出的值,进而可求得高三被抽取的人数.【详解】由分层抽样可得,可得,设高三所抽取的人数为,则,解得.故选:C.10、B【解析】根据等比数列前项和的片段和性质求解即可.【详解】解:由题知:,,,所以,,成等比数列,即5,15,成等比数列,所以,解得.故选:B.11、C【解析】利用成等比数列,得到方程2a1+5d=2,将其整体代入{an}前6项的和公式中即可求出结果【详解】∵数列为等差数列,且成等比数列,∴,1,成等差数列,∴2,∴2=a1+a1+5d,解得2a1+5d=2,∴{an}前6项的和为2a1+5d)=故选C【点睛】本题考查等差数列前n项和求法,是基础题,解题时要认真审题,注意等差数列、等比数列的性质的合理运用12、C【解析】由条件利用函数的奇偶性和单调性,可得对恒成立,转化为且对恒成立.求得相应的最大值和最小值,从而求得的范围【详解】定义在上的函数为偶函数,且在上递减,在上单调递增,若不等式在上恒成立,即在上恒成立在上恒成立,即在上恒成立,即且在上恒成立令,则,,,,在上递增,上递减,令,当时,,在上递减,故可知,解得,所以实数m的取值范围是故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】以桥的顶点为坐标原点,水平方向所在直线为x轴建立直角坐标系,则根据点在抛物线上,可得抛物线的方程,设水面与桥的交点坐标为,求出,进而可得水面的宽度.【详解】以桥的顶点为坐标原点,水平方向所在直线为x轴建立直角坐标系,则抛物线的方程为,因为点在抛物线上,所以,即故抛物线的方程为,设河水上涨1米后,水面与桥的交点坐标为,则,得,所以此时桥洞中水面的宽度为米故答案为:14、##【解析】设为这3张卡片的标号相邻的组数,则的可能取值为0,1,2,利用列举法分别求出相应的概率,由此能求出随机变量的数学期望【详解】解:不透明袋中装有完全相同,标号分别为1,2,3,,8的八张卡片从中随机取出3张,共有种,设为这3张卡片的标号相邻的组数,则的可能取值为0,1,2,的情况有:,2,,,3,,,4,,,5,,,6,,,7,,共6个,,的情况有:取,另外一个数有5种取法;取,另外一个数有4种取法;取,另外一个数有4种取法;取,另外一个数有4种取法;取,另外一个数有4种取法;取,另外一个数有4种取法;取,另外一个数有5种取法的情况一共有:,,,随机变量的数学期望:故答案为:15、【解析】使用导数运算公式求得切点处的导数值,并根据导数的几何意义等于切线斜率求得切点的横坐标,进而得到切点坐标,然后利用点斜式求出切线方程即可.【详解】的导数为,设切点为,可得,解得,即有切点,则切线的方程为,即.故答案为:.【点睛】本题考查导数的加法运算,导数的几何意义,和求切线方程,难度不大,关键是正确的使用导数运算公式求得切点处的导数值,16、2【解析】由空间向量数量积的坐标运算可得答案.【详解】因为,,,所以,.故答案为:2.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)首先将命题,化简,然后由为真可得,均为真,取交集即可求出实数的取值范围;(2)将是的充分不必要条件转化为是的必要不充分条件,进而将问题转化为,从而求出实数的取值范围【详解】(1)若命题为真,则,解得,当时,命题,若命题为真,则,解得,所以,因为为真,所以,均为真,所以,所以,所以实数的取值范围为(2)因为是的充分不必要条件,所以是的必要不充分条件,所以,所以或,所以,所以实数的取值范围是【点睛】本题主要考查根据真值表判断复合命题中的单个命题的真假,根据充分不必要条件求参数的取值范围,同时考查一元二次不等式的解法,分式不等式的解法.第(2)问关键是将问题等价转化为两个集合间的真包含关系18、(1)(2)(3)【解析】(1)先表示出边、所在直线的斜率,然后根据两条直线的斜率关系建立方程即可;(2)联立直线与椭圆方程,利用韦达定理和中点坐标公式即可求出直线的斜率;(3)先表示出,然后利用椭圆的性质,进而确定的最大值.【小问1详解】设点,则由可得:化简得:故顶点的轨迹的方程:【小问2详解】当直线的斜率不存在时,显然不符合题意;当直线的斜率存在时,设直线的方程为联立方程组消去可得:设直线与轨迹的交点,的坐标分别为由韦达定理得:点为、两点的中点,可得:,即则有:解得:故求直线的方程为:【小问3详解】由(1)可知,设则有:又点满足,即由椭圆的性质得:所以当时,19、(1)或(2)存在,【解析】(1)确定点为抛物线的焦点,则根据抛物线的焦半径公式,结合抛物线方程,求得答案;(2)假设存在正数m,使得以MN为直径的圆经过坐标原点O,可推得,由此可设直线方程,联立抛物线方程,利用根与系数的关系,代入到中,可得结论.【小问1详解】依题意得为的焦点,故,解得,故,则∴点的坐标或;【小问2详解】假设存在正数,使得以为直径的圆经过坐标原点,∴,设直线:,,,由,得,则,,∵,,∴,解得或(舍去)所以存在正数,使得以为直径的圆经过坐标原点.20、(1)(2)【解析】(1)由焦半径公式可得,求解即可得答案;(2)由题意,直线AB斜率不为0,设,,联立直线与抛物线的方程,由韦达定理及可得,从而可得直线AB恒过定点,进而可得定点在椭圆内部或椭圆上即可求解.【小问1详解】解:因为抛物线上横坐标为3的点P到焦点F的距离为4,所以,解得,所以抛物线E的方程为;【小问2详解】解:由题意,直线AB斜率不为0,设,,由,可得,所以,因为,即,所以,所以,即,所以,所以直线,所以直线AB恒过定点,因为直线AB与椭圆恒有公共点,所以定点在椭圆内部或椭圆上,即,所以.21、(1)证明见解析;(2)是定值,定值为.【解析】(1)设直线方程为,联立直线与抛物线的方程得到韦达定理,再利用韦达定理求出,即得证;(2)设直线方程为,联立直线与抛物线的方程得到韦达定理,再求出,,即得解.【详解】(1)设直线方程为,联立直线与抛物线的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论