版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届北京市月坛中学数学高二上期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.中国古代数学著作算法统宗中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见首日行里数,请公仔细算相还.”其大意为:有一个人走里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,恰好走了天到达目的地,则该人第一天走的路程为()A.里 B.里C.里 D.里2.抛物线的准线方程为()A B.C. D.3.为了了解1200名学生对学校某项教改实验的意见,打算从中抽取一个容量为40的样本,采用系统抽样方法,则分段的间隔为()A.40 B.30C.20 D.124.已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=()A.2 B.3C.6 D.95.方程表示的曲线经过的一点是()A. B.C. D.6.如图,在正方体中,E为的中点,则直线与平面所成角的正弦值为()A. B.C. D.7.命题“若,则”的逆命题、否命题、逆否命题中是真命题的个数为()A.0个 B.1个C.2个 D.3个8.设异面直线、的方向向量分别为,,则异面直线与所成角的大小为()A. B.C. D.9.若抛物线焦点与椭圆的右焦点重合,则的值为A. B.C. D.10.已知双曲线,过其右焦点作渐近线的垂线,垂足为,延长交另一条渐近线于点A.已知为原点,且,则()A. B.C. D.11.已知集合,则()A. B.C. D.12.圆与圆的位置关系是()A.相交 B.相离C.内切 D.外切二、填空题:本题共4小题,每小题5分,共20分。13.正四棱锥底面边长和高均为分别是其所在棱的中点,则棱台的体积为___________.14.在中,,,,则此三角形的最大边长为___________.15.已知点,则线段的垂直平分线的一般式方程为__________.16.双曲线的左顶点为,虚轴的一个端点为,右焦点到直线的距离为,则双曲线的离心率为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列满足,.(1)求证:数列是等比数列;(2)求数列的通项公式及前项的和.18.(12分)已知函数在处的切线与直线平行(1)求值,并求此切线方程;(2)证明:19.(12分)已知等差数列}的公差为整数,为其前n项和,,(1)求{}的通项公式:(2)设,数列的前n项和为,求20.(12分)已知数列的首项,其前n项和为,且满足.(1)求数列的通项公式;(2)设,数列的前n项和为,且,求n.21.(12分)已知O为坐标原点,点P在抛物线C:上,点F为抛物线C的焦点,记P到直线的距离为d,且.(1)求抛物线C的标准方程;(2)若过点的直线l与抛物线C相切,求直线l的方程.22.(10分)平面直角坐标系中,过椭圆:右焦点的直线交M于A,B两点,P为AB的中点,且OP的斜率为.(1)求椭圆M的方程;(2)C,D为椭圆M上的两点,若四边形ACBD的对角线CD与AB垂直,求四边形ACBD面积的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】建立等比数列的模型,由等比数列的前项和公式求解【详解】记第天走的路程为里,则是等比数列,,,故选:C2、D【解析】根据抛物线方程求出,进而可得焦点坐标以及准线方程.【详解】由可得,所以焦点坐标为,准线方程为:,故选:D.3、B【解析】根据系统抽样的概念,以及抽样距的求法,可得结果.【详解】由总数为1200,样本容量为40,所以抽样距为:故选:B【点睛】本题考查系统抽样的概念,属基础题.4、C【解析】利用抛物线的定义建立方程即可得到答案.【详解】设抛物线的焦点为F,由抛物线的定义知,即,解得.故选:C.【点晴】本题主要考查利用抛物线的定义计算焦半径,考查学生转化与化归思想,是一道容易题.5、C【解析】当时可得,可得答案.【详解】当时可得所以方程表示的曲线经过的一点是,且其它点都不满足方程,故选:C6、D【解析】构建空间直角坐标系,求直线的方向向量、平面的法向量,应用空间向量的坐标表示,求直线与平面所成角的正弦值.【详解】以点D为坐标原点,向量分别为x,y,z轴建立空间直角坐标系,则,,,,可得,,,设面的法向量为,有,取,则,所以,,,则直线与平面所成角的正弦值为故选:D.7、B【解析】先判断出原命题和逆命题的真假,进而根据互为逆否的两个命题同真或同假最终得到答案.【详解】“若a=0,则ab=0”,命题为真,则其逆否命题也为真;逆命题为:“若ab=0,则a=0”,显然a=1,b=0时满足ab=0,但a≠0,即逆命题为假,则否命题也为假.故选:B.8、C【解析】利用空间向量夹角的公式直接求解.【详解】,,,.由异面直线所成角的范围为,故异面直线与所成的角为.故选:C9、D【解析】解:椭圆的右焦点为(2,0),所以抛物线的焦点为(2,0),则,故选D10、C【解析】画出图象,结合渐近线方程得到,,进而得到,结合渐近线的斜率及角度关系,列出方程,求出,从而求出.【详解】渐近线为,如图,过点F作FB垂直于点B,交于点A,则到渐近线距离为,则,又,由勾股定理得:,则,又,,所以,解得:,所以.故选:C11、B【解析】先求得集合A,再根据集合的交集运算可得选项.【详解】解:因为,所以故选:B.12、A【解析】求出两圆的圆心及半径,求出圆心距,从而可得出结论.【详解】解:圆的圆心为,半径为,圆圆心为,半径为,则两圆圆心距,因为,所以两圆相交.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分别计算,,作差得到答案.【详解】分别是其所在棱的中点,则正四棱锥底面边长和高均为,,,故.故答案为:.14、【解析】可知B对的边最大,再用正弦定理计算即可.【详解】利用正弦定理可知,B对的边最大,因为,,所以,.故答案为:15、【解析】由中点坐标公式和斜率公式可得的中点和直线斜率,由垂直关系可得垂直平分线的斜率,由点斜式可得直线方程,化为一般式即可【详解】由中点坐标公式可得,的中点为,可得直线的斜率为,由垂直关系可得其垂直平分线的斜率为,故可得所求直线的方程为:,化为一般式可得故答案为:16、【解析】根据双曲线左顶点和虚轴端点的定义,结合点到直线距离公式、双曲线的离心率公式进行求解即可.【详解】不妨设在纵轴的正半轴上,由双曲线的标准方程可知:,右焦点的坐标为,直线的方程为:,因为右焦点到直线的距离为,所以有,即双曲线的离心率为,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2),.【解析】(1)证明出,即可证得结论成立;(2)由(1)的结论并确定数列的首项和公比,可求得数列的通项公式,再利用分组求和法可求得.【小问1详解】证明:因为数列满足,,则,且,则,,,以此类推可知,对任意的,,所以,,故数列为等比数列.【小问2详解】解:由(1)可知,数列是首项为,公比为的等比数列,则,所以,,因此,.18、(1);;(2)证明见解析.【解析】(1)根据导数几何意义可知,解方程求得,进而得到切线方程;(2)当时,由,知不等式成立;当时,令,利用导数可求得在上单调递增,从而得到,由此可得结论.【小问1详解】,,在处的切线与直线平行,即切线斜率为,,解得:,,,所求切线方程为:,即;【小问2详解】要证,即证;①当时,,,,即,;②当时,令,,,当时,,,,,即,在上单调递增,,在上单调递增,,即在上恒成立;综上所述:.【点睛】思路点睛:本题第二问考查利用导数证明不等式的问题,解题的基本思路是将问题转化为函数最值的求解问题;通过构造函数,利用导数求函数最值的方法可确定恒成立,从而得到所证结论.19、(1)(2)【解析】(1)根据题意利用等差数列的性质列出方程,即可解得答案;(2)根据(1)的结果,求出的表达式,利用裂项求和的方法求得答案.小问1详解】设等差数列{}的公差为d,则,整理可得:,∵d是整数,解得,从而,所以数列{}的通项公式为:;【小问2详解】由(1)知,,所以20、(1)(2)【解析】(1)由条件得,则利用等差数列的定义可得答案;(2)利用裂项求和求出,再根据可求出n.【小问1详解】由得,从而数列是以1为首项,1为公差的等差数列,所以;【小问2详解】由(1)得,由得又,所以.21、(1);(2)或.【解析】(1)根据抛物线的定义进行求解即可;(2)根据直线l是否存在斜率分类讨论,结合一元二次方程根的判别式进行求解即可.【小问1详解】因为,所以P到直线的距离等于,所以抛物线C的准线为,所以,,所以抛物线C的标准方程为;【小问2详解】当直线l的斜率不存在时,方程为,此时直线l恰与抛物线C相切当直线l的斜率存在时,设其方程为,联立方程,得若,显然不合题意;若,则,解得此时直线l的方程为综上,直线l与抛物线C相切时,l的方程为或.22、(1)(2)【解析】(1)设,,的中点为,利用“点差法”求解;(2)由求得A,B的坐标,进而得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 购车有保障质量放心
- 购销合同毛竹版
- 购销合同签订中的合同风险控制
- 购销设备合同案例
- 资金安全保护声明
- 赞助商活动参与条款
- 软件定制开发与实施合同
- 轻松掌握历史教材内容
- 软件需求降低合同修改
- 遵守家规保证不外出的宣言
- 魔方教学(课堂PPT)
- 化学工程与工艺专业课程设计-8000吨年氧化羰化制碳酸二甲酯合成工艺设计(含全套CAD图纸)
- 完整版中医医院感染性疾病科建设与管理指引2012
- 【签证在职收入证明模板】中英文版在职及收入证明(父母在职收入证明).doc
- 裸露土地绿网覆盖施工方案
- 数学画图坐标纸(可直接打印使用)2页
- 毕业设计(论文):关于绿色物流的发展现状与应对措施
- 有丝分裂课件.上课
- 车管所机动车抵押登记质押备案申请表
- DB11∕1761-2020 步行和自行车交通环境规划设计标准
- 磁制冷技术的研究及应用
评论
0/150
提交评论