2023-2024学年新疆库车县乌尊镇中学高二数学第一学期期末联考试题含解析_第1页
2023-2024学年新疆库车县乌尊镇中学高二数学第一学期期末联考试题含解析_第2页
2023-2024学年新疆库车县乌尊镇中学高二数学第一学期期末联考试题含解析_第3页
2023-2024学年新疆库车县乌尊镇中学高二数学第一学期期末联考试题含解析_第4页
2023-2024学年新疆库车县乌尊镇中学高二数学第一学期期末联考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年新疆库车县乌尊镇中学高二数学第一学期期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设m,n是两条不同直线,,是两个不同平面,则下列说法错误的是()A.若,,则; B.若,,则;C.若,,则; D.若,,则2.是直线与直线互相平行的()条件A.必要而不充分 B.充分而不必要C.充要 D.既不充分也不必要3.复数,且z在复平面内对应的点在第二象限,则实数m的值可以为()A.2 B.C. D.04.已知椭圆的左,右焦点分别为,,直线与C交于点M,N,若四边形的面积为且,则C的离心率为()A. B.C. D.5.已知点,点关于原点对称点为,则()A. B.C. D.6.甲、乙两人下棋,甲获胜的概率为30%,甲不输的概率为80%,则甲、乙下成平局的概率()A.50% B.30%C.10% D.60%7.已知向量为平面的法向量,点在内,点在外,则点到平面的距离为()A. B.C. D.8.若方程表示双曲线,则()A. B.C. D.9.均匀压缩是物理学一种常见现象.在平面直角坐标系中曲线均匀压缩,可用曲线上点的坐标来描述.设曲线上任意一点,若将曲线纵向均匀压缩至原来的一半,则点的对应点为.同理,若将曲线横向均匀压缩至原来的一半,则曲线上点的对应点为.若将单位圆先横向均匀压缩至原来的一半,再纵向均匀压缩至原来的,得到的曲线方程为()A. B.C. D.10.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,他所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,而是逐项差数之差或者高次差相等.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有一个高阶等差数列,其前6项分别为1,5,11,21,37,61,则该数列的第7项为()A.95 B.131C.139 D.14111.已知函数,当时,函数在,上均为增函数,则的取值范围是A. B.C. D.12.将一张坐标纸折叠一次,使点与重合,求折痕所在直线是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列满足,,若为等差数列,则___________,若,则数列的前项和为___________.14.已知变量X,Y的一组样本数据如下表所示,其中有一个数据丢失,用a表示.若根据这组样本利用最小二乘法求得的Y关于X的回归直线方程为,则_________.X1491625Y2a369314215.已知函数的导函数为,且对任意,,若,,则的取值范围是___________.16.已知双曲线的右焦点为F,以F为圆心,以a为半径的圆与双曲线C的一条渐近线交于A,B两点.若(O为坐标原点),则双曲线C的离心率为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,,,,,为中点,且平面.(1)求点到平面的距离;(2)线段上是否存在一点,使平面?如果不存在,请说明理由;如果存在,求的值.18.(12分)已知离心率为的椭圆经过点.(1)求椭圆的方程;(2)若不过点的直线交椭圆于两点,求面积的最大值.19.(12分)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥面ABCD,E为PD的中点.(1)证明:PB∥面AEC;(2)设AP=1,AD=,三棱锥P-ABD的体积V=,求点A到平面PBC的距离.20.(12分)在中,角,,所对的边分别为,,,其外接圆半径为,已知(1)求角;(2)若边的长是该边上高的倍,求21.(12分)已知甲射击的命中率为0.7.乙射击的命中率为0.8,甲乙两人的射击互相独立.求:(1)甲乙两人同时击中目标的概率;(2)甲乙两人中至少有一个人击中目标的概率;(3)甲乙两人中恰有一人击中目标的概率22.(10分)立德中学举行冬令营活动期间,对位参加活动的学生进行了文化和体能测试,满分为150分,其测试成绩都在90分和150分之间,成绩在认定为“一般”,成绩在认定为“良好”,成绩在认定为“优秀”.成绩统计人数如下表:体能文化一般良好优秀一般0良好3优秀2例如,表中体能成绩良好且文化成绩一般的学生有2人(1)若从这位参加测试的学生中随机抽取一位,抽到文化或体能优秀的学生概率为.求,的值;(2)在(1)的情况下,从体能成绩优秀的学生中,随机抽取2人,求至少有一个人文化的成绩为优秀的概率;(3)若让使参加体能测试的成绩方差最小,写出的值.(直接写出答案)

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】直接由直线平面的定理得到选项正确;对于选项,m,n可能平行、相交或异面,所以该选项错误;对于选项,与内一直线l,所以,因为l为内一直线,所以.所以该选项正确.【详解】对于选项,若,,则,所以该选项正确;对于选项,若,,则,所以该选项正确;对于选项,若,,则m,n可能平行、相交或异面,所以该选项错误;对于选项,若,,则与内一直线l,所以,因为l为内一直线,所以.所以该选项正确.故选:C【点睛】本题主要考查空间直线平面位置关系判断,意在考查学生对这些知识的理解掌握水平.2、B【解析】求出直线与平行的等价条件,再利用充分条件、必要条件的定义判断作答.【详解】由解得或,当时,与平行,当时,与平行,则直线与直线平行等价于或,所以是直线与直线互相平行的充分而不必要条件.故选:B3、B【解析】根据复数的几何意义求出的范围,即可得出答案.【详解】解:当z在复平面内对应的点在第二象限时,则有,可得,结合选项可知,B正确故选:B4、A【解析】根据题意可知四边形为平行四边形,设,进而得,根据四边形面积求出点M的坐标,再代入椭圆方程得出关于e的方程,解方程即可.【详解】如图,不妨设点在第一象限,由椭圆的对称性得四边形为平行四边形,设点,由,得,因为四边形的面积为,所以,得,由,得,解得,所以,即点,代入椭圆方程,得,整理得,由,得,解得,由,得.故选:A5、C【解析】根据空间两点间距离公式,结合对称性进行求解即可.【详解】因为点关于原点的对称点为,所以,因此,故选:C6、A【解析】根据甲获胜和甲、乙两人下成平局是互斥事件即可求解.【详解】甲不输有两种情况:甲获胜或甲、乙两人下成平局,甲获胜和甲、乙两人下成平局是互斥事件,所以甲、乙两人下成平局的概率为.故选:A.7、A【解析】先求出向量,再利用空间向量中点到平面的距离公式即可求解.【详解】解:由题知,点在内,点在外,所以又向量为平面的法向量所以点到平面的距离为:故选:A.8、C【解析】根据曲线方程表示双曲线方程有,即可求参数范围.【详解】由题设,,可得.故选:C.9、C【解析】设单位圆上一点为,经过题设变换后坐标为,则,代入圆的方程即可得曲线方程.【详解】由题设,单位圆上一点坐标为,经过横向均匀压缩至原来的一半,纵向均匀压缩至原来的,得到对应坐标为,∴,则,故中,可得:.故选:C.10、A【解析】利用已知条件,推出数列的差数的差组成的数列是等差数列,转化求解即可【详解】由题意可知,1,5,11,21,37,61,……,的差的数列为4,6,10,16,24,……,则这个数列的差组成的数列为:2,4,6,8,……,是一个等差数列,设原数列的第7项为,则,解得,所以原数列的第7项为95,故选:A11、A【解析】由,函数在上均为增函数,恒成立,,设,则,又设,则满足线性约束条件,画出可行域如图所示,由图象可知在点取最大值为,在点取最小值.则的取值范围是,故答案选A考点:利用导数研究函数的性质,简单的线性规划12、D【解析】设,,则折痕所在直线是线段AB的垂直平分线,故求出AB中点坐标,折痕与直线AB垂直,进而求出斜率,用点斜式求出折痕所在直线方程.【详解】,,所以与的中点坐标为,又,所以折痕所在直线的斜率为1,故折痕所在直线是,即.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、①.##②.【解析】利用递推关系式,结合等差数列通项公式可求得公差,进而得到;利用递推关系式可知数列的奇数项和偶数项分别成等差数列,采用裂项相消的方法可求得前项和.【详解】由得:,解得:;为等差数列,设其公差为,则,解得:,;由知:数列的奇数项是以为首项,为公差的等差数列;偶数项是以为首项,为公差的等差数列;,又,,数列的前项和,.故答案为:;.【点睛】关键点点睛:本题考查根据数列递推关系求解数列中的项、裂项相消法求和的问题;解题关键是能够根据递推关系式得到数列的奇数项和偶数项分别成等差数列,由此可通过裂项相消的方法求得所求数列的和.14、17【解析】根据回归直线必过样本点中心即可解出【详解】因为,,所以,解得故答案为:1715、【解析】构造函数,利用导数分析函数的单调性,将所求不等式变形为,结合函数的单调性可得解.【详解】构造函数,则,故函数在上单调递减,由已知可得,由可得,可得.故答案为:.16、【解析】过F作,利用点到直线距离可求出,再根据勾股定理可得,,由可得,即可建立关系求解.【详解】如图,过F作,则E是AB中点,设渐近线为,则,则在直角三角形OEF中,,在直角三角形BEF中,,,则,即,即,则,即,.故答案为:.【点睛】本题考查双曲线离心率的求解,解题的关键是分别表示出,,由建立关系.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)线段上存在一点,当时,平面.【解析】(1)设点到平面的距离为,则由,由体积法可得答案.(2)由(1)连接,可得则从而平面,过点作交于点,连接,可证明平面平面,从而可得出答案.【小问1详解】由,,为中点,则由平面,平面,则又,且,则平面又,则平面,且都在平面内所以所以,取的中点,连接,则,所以,所以所以所以则设点到平面的距离为,则由即,即【小问2详解】线段上是否存在一点,使平面.由(1)连接,则四边形为平行四边形,则过点作交于,则为中点,则为的中点,即又平面,则平面过点作交于点,连接,则,即又平面,所以平面又,所以平面平面又平面,所以平面所以线段上存在一点,当时,平面.18、(1);(2).【解析】(1)根据,可设,,求出,得到椭圆的方程,代入点的坐标,求出,即可得出结果.(2)设出点,的坐标,直线与椭圆方程联立,利用韦达定理求出弦长,由点到直线的距离公式,三角形的面积公式及基本不等式可得结论.【详解】(1)因为,所以设,,则,椭圆的方程为.代入点的坐标得,,所以椭圆的方程为.(2)设点,的坐标分别为,,由,得,即,,,,.,点到直线的距离,的面积,当且仅当,即时等号成立.所以当时,面积的最大值为.【点睛】本题主要考查了椭圆的标准方程和性质,直线与椭圆相交问题.属于中档题.19、(1)证明见解析;(2).【解析】(1)设BD交AC于点O,连结EO,根据三角形中位线证明BP∥EO即可;(2)根据三棱锥P-ABD的体积求出AB长度,过A作AH⊥BP于H,可证AH即为要求的距离,根据直角三角形等面积法即可求AH长度.【小问1详解】设BD交AC于点O,连结EO.∵ABCD为矩形,∴O为BD的中点.又E为PD的中点,∴EO∥PB,又EO平面AEC,PB平面AEC,∴PB∥平面AEC.【小问2详解】,又V=,可得AB=2.在面PAB内过点A作交于.由题设易知平面,∴故平面,由等面积法得:,∴点A到平面的距离为.20、(1);(2)【解析】(1)利用正弦定理将角化边,再利用余弦定理计算可得;(2)记边上的高为,不妨设,即可求出,再利用余弦定理求出,在中,记,根据锐角三角函数求出,,最后根据,利用两角和的余弦公式计算可得;【详解】解:(1)由已知条件,所以,所以所以,,由余弦定理可得,而,于是(2)记边上的高为,不妨设,则,,,所以,由余弦定理得,在中,记,则,,所以21、(1)0.56(2)0.94(3)0.38【解析】(1)根据独立事件的概率公式计算;(2)结合对立事件的概率公式、独立事件的概率公式计算(3)利用互斥事件与独立事件的概率公式计算【小问1详解】设甲击中目标为事件,乙击中目标为事件,甲乙两人同时击中目标的概率;【小问2详解】甲乙两人中至少有一个人击中目标的概率为;【小问3详解】甲乙两人中恰有一人击中目标的概率为22、(1),;(2);(3).【解析】(1)由题设可得求参数a,结合表格数据及已知总学生人数求参数b.(2)应用列举法求古典概型的概率.(3)应用表格数据及方差公式可得且,即可确定成绩方差最小对应的值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论