




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年上海市徐汇区、金山区、松江区高二上数学期末统考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.正方体的棱长为2,E,F,G分别为,AB,的中点,则直线ED与FG所成角的余弦值为()A. B.C. D.2.曲线的离心率为()A. B.C. D.3.为了调查修水县2019年高考数学成绩,在高考后对我县6000名考生进行了抽样调查,其中2000名文科考生,3800名理科考生,200名艺术和体育类考生,从中抽到了120名考生的数学成绩作为一个样本,这项调查宜采用的抽样方法是()A.系统抽样法 B.分层抽样法C.抽签法 D.简单的随机抽样法4.下图称为弦图,是我国古代三国时期赵爽为《周髀算经》作注时为证明勾股定理所绘制,我们新教材中利用该图作为“()”的几何解释A.如果,,那么B.如果,那么C.对任意实数和,有,当且仅当时等号成立D.如果,那么5.已知双曲线的左、右焦点分别为,半焦距为c,过点作一条渐近线的垂线,垂足为P,若的面积为,则该双曲线的离心率为()A.3 B.2C. D.6.下面四个说法中,正确说法的个数为()(1)如果两个平面有三个公共点,那么这两个平面重合;(2)两条直线可以确定一个平面;(3)若,,,则;(4)空间中,两两相交的三条直线在同一平面内.A.1 B.2C.3 D.47.数列中,满足,,设,则()A. B.C. D.8.已知数列中,,则()A. B.C. D.9.已知,若是函数一个零点,则的值为()A.0 B.C.1 D.10.命题“对任意,都有”的否定是()A.对任意,都有 B.存在,使得C.对任意,都有 D.存在,使得11.下列函数中,以为最小正周期,且在上单调递减的为()A. B.C. D.12.已知数列的前n项和为,且对任意正整数n都有,若,则()A.2019 B.2020C.2021 D.2022二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则的导函数______.14.经过、两点的直线斜率为______.15.已知定点,点在直线上运动,则,两点的最短距离为________16.已知数列满足,则的前20项和___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线过点,且被两条平行直线,截得的线段长为.(1)求的最小值;(2)当直线与轴平行时,求的值.18.(12分)2021年2月12日,辛丑牛年大年初一,由贾玲导演的电影《你好,李焕英》上映,截至到2月21日22点8分,票房攀升至40.25亿,反超同期上映的《唐人街探案3》,迎来了2021春节档最具戏剧性的一幕.正是因为影片中母女间的这份简单、纯粹、诚挚的情感触碰了人们内心柔软的地方,打动了万千观众,才赢得了良好的口碑,不少观众都流下了感动的泪水.影片结束后,某电影院工作人员当日随机抽查了100名观看《你好,焕英》的观众,询问他们在观看影片的过程中是否“流泪”,得到以下表格:男性观众女性观众合计流泪20没有流泪520合计(1)完成表格中的数据,并判断是否有99.9%的把握认为观众在观看影片的过程中流泪与性别有关?(2)以分层抽样的方式,从流泪与没有流泪的观众中抽取5人,然后从这5人中再随机抽取2人,求这2人都流泪的概率附:0.1000.0500.0100.0012.7063.8416.63510.828,19.(12分)求满足下列条件的圆锥曲线方程的标准方程.(1)经过点,两点的椭圆;(2)与双曲线-=1有相同的渐近线且经过点的双曲线.20.(12分)已知三棱柱中,.(1)求证:平面平面.(2)若,在线段上是否存在一点使平面和平面所成角的余弦值为若存在,确定点的位置;若不存在,说明理由.21.(12分)设数列的前n项和为,且满足.(1)证明为等比数列,并求数列通项公式;(2)在(1)的条件下,设,求数列的前项和.22.(10分)已知为数列的前项和,且(1)求数列的通项公式;(2)若,求数列的前项和(3)设,若不等式对一切恒成立,求实数取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】建立空间直角坐标系,利用空间向量坐标运算即可求解.【详解】如图所示建立适当空间直角坐标系,故选:B2、C【解析】由曲线方程直接求离心率即可.【详解】由题设,,,∴离心率.故选:C.3、B【解析】考生分为几个不同的类型或层次,由此可以确定抽样方法;【详解】6000名考生进行抽样调查,其中2000名文科考生,3800名理科考生,200名艺术和体育类考生,从中抽到了120名考生的数学成绩作为一个样本又文科考生、理科考生、艺术和体育类考生会存在差异,采用分层抽样法较好故选:B.【点睛】本题主要考查的是分层抽样,掌握分层抽样的有关知识是解题的关键,属于基础题.4、C【解析】设图中直角三角形边长分别为a,b,则斜边为,则可表示出阴影面积和正方形面积,根据图象关系,可得即可得答案.【详解】设图中全等的直角三角形的边长分别为a,b,则斜边为,如图所示:则四个直角三角形的面积为,正方形的面积为,由图象可得,四个直角三角形面积之和小于等于正方形的面积,所以,当且仅当时等号成立,所以对任意实数和,有,当且仅当时等号成立.故选:C5、D【解析】根据给定条件求出,再计算面积列式计算作答.【详解】依题意,点,由双曲线对称性不妨取渐近线,即,则,令坐标原点为O,中,,又点O是线段的中点,因此,,则有,即,,,所以双曲线的离心率为故选:D6、A【解析】如果两个平面有三个公共点,那么这两个平面重合或者是相交,即可判断;利用两条异面直线不能确定一个平面即可判断;利用平面的基本性质中的公理判断即可;若两两相交的三条直线相交于同一点,则相交于同一点的三直线不一定在同一平面内(如棱锥的3条侧棱),即可判断.【详解】如果两个平面有三个公共点,那么这两个平面重合或者是相交,故(1)不正确;两条异面直线不能确定一个平面,故(2)不正确;利用平面的基本性质中的公理判断(3)正确;空间中,若两两相交的三条直线相交于同一点,则相交于同一点的三直线不一定在同一平面内(如棱锥的3条侧棱),故(4)不正确,综上所述只有一个说法是正确的,故选:A【点睛】本题主要考查了空间中点,线,面的位置关系.属于较易题.7、C【解析】由递推公式可归纳得,由此可以求出的值【详解】因为,,所以,,,因此故选C【点睛】本题主要考查利用数列的递推式求值和归纳推理思想的应用,意在考查学生合情推理的意识和数学建模能力8、D【解析】由数列的递推公式依次去求,直到求出即可.【详解】由,可得,,,故选:D.9、A【解析】首先根据题意求出,然后设函数,利用以及的单调性,并结合对数运算即可求解.【详解】由题意可知,,所以,不妨设,(),故,从而,易知在上单调递增,故,即,从而.故选:A.10、B【解析】根据全称命题的否定是特称命题形式,可判断正确答案.【详解】因为全称命题的否定是特称命题,所以命题“对任意,都有”的否定是“存在,使得”故选:B.11、B【解析】A.利用正切函数的性质判断;B.作出的图象判断;C.作出的图象判断;D.作出的图象判断.【详解】A.是以为最小正周期,在上单调递增,故错误;B.如图所示:,由图象知:函数是以为最小正周期,在上单调递减,故正确;C.如图所示:,由图象知:是以为最小正周期,在上单调递增,故错误;D.如图所示:,由图象知:是以为最小正周期,在上单调递增,故错误;故选:B12、C【解析】先令代入中,求得,再根据递推式得到,将与已知相减,可判断数列是等比数列,进而确定,求得答案.【详解】因为,令,则,又,故,即,故数列是等比数列,则,所以,所以,故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用基本初等函数的求导公式及积的求导法则计算作答.【详解】函数定义域为,则,所以.故答案为:14、【解析】利用斜率公式可求得结果.【详解】由斜率公式可知,直线的斜率为.故答案为:.15、【解析】线段最短,就是说的距离最小,此时直线和直线垂直,可先求的斜率,再求直线的方程,然后与直线联立求交点即可【详解】定点,点在直线上运动,当线段最短时,就是直线和直线垂直,的方程为:,它与联立解得,所以的坐标是,所以,故答案为:16、135【解析】直接利用数列的递推关系式写出相邻四项之和,进而求出数列的和.【详解】数列满足,所以,故,当时,,当时,,,当时,,所以.故答案为:135.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)3;(2)5【解析】(1)由题可得和的距离即为的最小值;(2)可得此时直线的方程为,求出交点坐标即可求出距离.【详解】(1)由题可得当且时,取得最小值,即和的距离,由两平行线间的距离公式,得,所以的最小值为3.(2)当直线与轴平行时,方程为,设直线与直线,分别交于点,,则,,所以,即,所以.18、(1)填表见解析;有99.9%的把握认为观众在观看影片的过程中流泪与性别有关;(2)【解析】(1)由已知数据可完善列联表,然后计算可得结论;(2)根据分层抽样定义求出5人中流泪与没有流泪的观众人数并编号,用列举法写出作任取2人的所有基本事件,并得出2人都流泪的基本事件,计数后可计算概率【详解】解:(1)男性观众女性观众合计流泪206080没有流泪15520合计3565100所以有99.9%的把握认为观众在观看影片的过程中流泪与性别有关(2)以分层抽样的方式,从流泪与没有流泪的观众中抽取5人,则流泪的观众抽到人,记为,,,,没有流泪的观众抽到人,记为从这5人中抽2人有10种情况,分别是,,,,,,,,,其中这2人都流泪有6种情况,分别是,,,,,所以所求概率19、(1);(2)【解析】(1)由题意可得,,从而可求出椭圆的标准方程,(2)由题意设双曲线的共渐近线方程为,再将的坐标代入方程可求出的值,从而可求出双曲线方程【小问1详解】因为,所以P、Q分别是椭圆长轴和短轴上的端点,且椭圆的焦点在x轴上,所以,所以椭圆的标准方程为.【小问2详解】设与双曲线共渐近线的方程为,代入点,解得m=2,所以双曲线的标准方程为20、(1)证明见解析;(2)在线段上存在一点,且P是靠近C的四等分点.【解析】(1)连接,根据给定条件证明平面得即可推理作答.(2)在平面内过C作,再以C为原点,射线CA,CB,Cz分别为x,y,z轴正半轴建立空间直角坐标系,利用空间向量计算判断作答.【小问1详解】在三棱柱中,四边形是平行四边形,而,则是菱形,连接,如图,则有,因,,平面,于是得平面,而平面,则,由得,,平面,从而得平面,又平面,所以平面平面.【小问2详解】在平面内过C作,由(1)知平面平面,平面平面,则平面,以C为原点,射线CA,CB,Cz分别为x,y,z轴正半轴建立空间直角坐标系,如图,因,,则,假设在线段上存在符合要求的点P,设其坐标为,则有,设平面的一个法向量,则有,令得,而平面的一个法向量,依题意,,化简整理得:而,解得,所以在线段上存在一点,且P是靠近C的四等分点,使平面和平面所成角的余弦值为.21、(1)证明见解析,;(2).【解析】(1)利用与的关系求数列的递推关系,即得证明结论,并根据等比数列求通项公式;(2)根据(1)的结果求出,再分和,求.【详解】(1)当时,,,当时,,与已知式作差得,即,又,∴,∴,故数列是以为首项,2为公比的等比数列,所以(2)由(1)知,∴,若,,若,,∴.【点睛
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 药品耗材监测管理制度
- 药品销售差错管理制度
- 药店医保基本管理制度
- 药店数据安全管理制度
- 菌种保藏中心管理制度
- 设备人员日常管理制度
- 设备制作车间管理制度
- 设备实施安全管理制度
- 设备日常基础管理制度
- 设备租赁资产管理制度
- 湖南省张家界市永定区2023-2024学年三年级下学期期末考试数学试题
- 2024年湖北省中考历史真题
- 2024小学六年级人教版道德与法治升学毕业小升初试卷及答案(时政+上下册考点)04
- 期末考试试卷(试题)-2023-2024学年三年级下册数学北师大版
- 人教版2024年数学小升初模拟试卷(含答案解析)
- 市场营销学智慧树知到期末考试答案章节答案2024年广东石油化工学院
- 架空送电线路导线及避雷线液压施工工艺规程
- 森林管护工考试考试题库(强化练习)
- GB/T 3880.2-2024一般工业用铝及铝合金板、带材第2部分:力学性能
- 艺术中国智慧树知到期末考试答案2024年
- 2024年中央财政支持社会组织参与社会服务项目资金管理与财务管理指引
评论
0/150
提交评论