版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年四川省广元市苍溪中学高二数学第一学期期末联考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知P是直线上的动点,PA,PB是圆的切线,A,B为切点,C为圆心,那么四边形PACB的面积的最小值是()A2 B.C.3 D.2.双曲线C:的右焦点为F,过点F作双曲线C的两条渐近线的垂线,垂足分别为H1,H2.若,则双曲线C的离心率为()A. B.C. D.23.已知点F为抛物线C:的焦点,点,若点Р为抛物线C上的动点,当取得最大值时,点P恰好在以F,为焦点的椭圆上,则该椭圆的离心率为()A. B.C. D.4.天文学家卡西尼在研究土星及其卫星的运行规律时发现:同一平面内到两个定点的距离之积为常数的点的轨迹是卡西尼卵形线.在平面直角坐标系中,设定点为,,,点O为坐标原点,动点满足(且为常数),化简得曲线E:.当,时,关于曲线E有下列四个命题:①曲线E既是轴对称图形,又是中心对称图形;②的最大值为;③的最小值为;④面积的最大值为.其中,正确命题的个数为()A.1个 B.2个C.3个 D.4个5.已知A,B,C三点不共线,O是平面ABC外一点,下列条件中能确定点M与点A,B,C一定共面的是A. B.C. D.6.设为实数,则曲线:不可能是()A.抛物线 B.双曲线C.圆 D.椭圆7.“”是“曲线为焦点在轴上的椭圆”的A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件8.已知数列满足,则满足的的最大取值为()A.6 B.7C.8 D.99.已知抛物线的焦点为,直线过点与抛物线相交于两点,且,则直线的斜率为()A. B.C. D.10.已知向量a→=(1,1,k),A. B.C. D.11.若曲线的一条切线与直线垂直,则的方程为()A. B.C. D.12.在四棱锥中,底面是正方形,为的中点,若,则()A B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知平面的法向量为,平面的法向量为,若,则___________.14.两个人射击,互相独立.已知甲射击一次中靶概率是0.6,乙射击一次中靶概率是0.3,现在两人各射击一次,中靶至少一次就算完成目标,则完成目标的概率为_____________15.直线l过抛物线的焦点F,与抛物线交于A,B两点,与其准线交于点C,若,则直线l的斜率为______.16.古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点A、B的距离之比为定值(且)的点的轨迹是圆”.后来人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆,在平面直角坐标系中,,,点满足,则点P的轨迹方程为__________.(答案写成标准方程),的最小值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)等差数列{an}的前n项和记为Sn,且.(1)求数列{an}的通项公式an(2)记数列的前n项和为Tn,若,求n的最小值.18.(12分)已知各项为正数的等比数列中,,.(1)求数列的通项公式;(2)设,求数列的前n项和.19.(12分)设函数(1)若曲线在点处的切线方程为,求;(2)求函数的单调区间20.(12分)已知直线,,,其中与交点为P(1)求过点P且与平行的直线方程;(2)求以点P为圆心,截所得弦长为8的圆的方程21.(12分)如图,已知椭圆的焦点是圆与x轴的交点,椭圆C的长半轴长等于圆O的直径(1)求椭圆C的方程;(2)F为椭圆C的右焦点,A为椭圆C的右顶点,点B在线段FA上,直线BD,BE与椭圆C的一个交点分别是D,E,直线BD与直线BE的倾斜角互补,直线BD与圆O相切,设直线BD的斜率为.当时,求k22.(10分)奋发学习小组共有3名学生,在某次探究活动中,他们每人上交了1份作业,现各自从这3份作业中随机地取出了一份作业.(1)每个学生恰好取到自己作业的概率是多少?(2)每个学生不都取到自己作业的概率是多少?(3)每个学生取到的都不是自己作业的概率是多少?
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由圆C的标准方程可得圆心为(1,1),半径为1,根据切线的性质可得四边形PACB面积等于,,故求解最小时即可确定四边形PACB面积的最小值.【详解】圆C:x2+y2-2x-2y+1=0即,表示以C(1,1)为圆心,以1为半径的圆,由于四边形PACB面积等于2×××=,而,故当最小时,四边形PACB面积最小,又的最小值等于圆心C到直线l:的距离d,而,故四边形PACB面积的最小值为,故选:D2、D【解析】将条件转化为该双曲线的一条渐近线的倾斜角为,可得,由离心率公式即可得解.【详解】由题意,(为坐标原点),所以该双曲线的一条渐近线的倾斜角为,所以,即,所以离心率.故选:D.3、D【解析】过点P引抛物线准线的垂线,交准线于D,根据抛物线的定义可知,记,根据题意,当最小,即直线与抛物线相切时满足题意,进而解出此时P的坐标,解得答案即可.【详解】如图,易知点在抛物线C的准线上,作PD垂直于准线,且与准线交于点D,记,则.由抛物线定义可知,.由图可知,当取得最大值时,最小,此时直线与抛物线相切,设切线方程为,代入抛物线方程并化简得:,,方程化为:,代入抛物线方程解得:,即,则,.于是,椭圆的长轴长,半焦距,所以椭圆的离心率.故选:D.4、D【解析】①:根据轴对称图形、中心对称图形的方程特征进行判断即可;②:结合两点间距离公式、曲线方程特征进行判断即可;③:根据卡西尼卵形线的定义,结合基本不等式进行判断即可;④:根据方程特征,结合三角形面积公式进行判断即可.【详解】当,时,.①:因为以代方程不变,以代方程不变,同时代,以代方程不变,所以曲线E既是轴对称图形,又是中心对称图形,因此本命题正确;②:由,所以有,所以,当时成立,因此本命题正确;③:因为,所以,当且仅当时,取等号,因此本命题正确;④:,因为,所以,的面积为,因此本命题正确,故选:D【点睛】关键点睛:利用方程特征进行求解判断是解题的关键.5、D【解析】首先利用坐标法,排除错误选项,然后对符合的选项验证存在使得,由此得出正确选项.【详解】不妨设.对于A选项,,由于的竖坐标,故不在平面上,故A选项错误.对于B选项,,由于的竖坐标,故不在平面上,故B选项错误.对于C选项,,由于的竖坐标,故不在平面上,故C选项错误.对于D选项,,由于的竖坐标为,故在平面上,也即四点共面.下面证明结论一定成立:由,得,即,故存在,使得成立,也即四点共面.故选:D.【点睛】本小题主要考查空间四点共面的证明方法,考查空间向量的线性运算,考查数形结合的数学思想方法,考查化归与转化的数学思想方法,属于中档题.6、A【解析】根据圆的方程、椭圆的方程、双曲线的方程和抛物线的方程特征即可判断.【详解】解:对A:因为曲线C的方程中都是二次项,所以根据抛物线标准方程的特征曲线C不可能是抛物线,故选项A正确;对B:当时,曲线C为双曲线,故选项B错误;对C:当时,曲线C为圆,故选项C错误;对D:当且时,曲线C为椭圆,故选项D错误;故选:A.7、C【解析】∵“”⇒“方程表示焦点在轴上的椭圆”,“方程表示焦点在轴上的椭圆”⇒“”,∴“”是“方程表示焦点在轴上的椭圆”的充要条件,故选C.8、B【解析】首先地推公式变形,得,,求得数列的通项公式后,再解不等式.【详解】因为,两边取倒数,得,整理为:,,所以数列是首项为1,公差为4的等差数列,,,因为,即,得,解得:,,所以的最大值是7.故选:B9、B【解析】设直线倾斜角为,由,及,可求得,当点在轴上方,又,求得,利用对称性即可得出结果.【详解】设直线倾斜角为,由,所以,由,,所以,当点在轴上方,又,所以,所以由对称性知,直线的斜率.故选:B.10、D【解析】根据向量的坐标运算和向量垂直数量积为0可解.【详解】解:根据题意,易得a→∵与两向量互相垂直,∴0+2+k+2=0,解得.故选:D11、A【解析】两直线垂直,斜率之积为,曲线与直线相切,联立方程令.【详解】法一:直线,所以,所以切线的,设切线的方程为,联立方程,所以,令,解得,所以切线方程为.法二:直线,所以,所以切线的,,所以令,所以,带入曲线方程得切点坐标为,所以切线方程为,化简得.故选:A.12、C【解析】由为的中点,根据向量的运算法则,可得,即可求解.【详解】由底面是正方形,E为的中点,且,根据向量的运算法则,可得.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】由,可两平面的法向量也平行,从而可求出,进而可求得答案【详解】因为平面的法向量为,平面的法向量为,,所以∥,所以存实数使,所以,所以,解得,所以,故答案为:214、72【解析】利用独立事件的概率乘法公式和对立事件的概率公式可求得所求事件的概率.【详解】由题意可知,若甲、乙两个各射击1次,至少有一人命中目标的概率为.故答案为:15、【解析】由抛物线方程求出焦点坐标与准线方程,设直线为,、,即可得到的坐标,再联立直线与抛物线方程,消元列出韦达定理,表示出、的坐标,根据得到方程,求出,即可得解;【详解】解:抛物线方程为,则焦点,准线为,设直线为,、,则,由,消去得,所以,,则,,因为,所以,所以,所以,解得,所以,即直线为,所以直线的斜率为;故答案为:16、①.②.【解析】设点P坐标,然后用直接法可求;根据轨迹方程和数量积的坐标表示对化简,结合轨迹方程可得x的范围,然后可解.【详解】设P点坐标为,则由,得,化简得,即.因为,所以因为点P在圆上,故所以,故的最小值为.故答案为:,三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)an=2n(2)100【解析】(1)由等差数列的通项公式列出方程组求解即可;(2)由裂项相消求和法得出,再由不等式的性质得出n的最小值.【小问1详解】设等差数列{an}的公差为d,依题意有解得,所以an=2n.【小问2详解】由(1)得,则,所以因为,即,解得n>99,所以n的最小值为100.18、(1);(2)【解析】(1)根据条件求出即可;(2),然后利用等差数列的求和公式求出答案即可.【详解】(1)且,,(2)19、(1)(2)答案见解析【解析】(1)求出,建立方程关系,即可求出结论;(2)对分类讨论,求出的单调区间.【小问1详解】由于切点在切线上,所以,函数通过点又,根据导数几何意义,;【小问2详解】由可知当时,则;当时,则;当时,的单调递减区间为,单调递增区间为当时,单调递增区间为,单调递减区间为.20、(1);(2).【解析】(1)首先求、的交点坐标,根据的斜率,应用点斜式写出过P且与平行的直线方程;(2)根据弦心距、弦长、半径的关系求圆的半径,结合P的坐标写出圆的方程.【小问1详解】联立、得:,可得,故,又的斜率为,则过P且与平行的直线方程,∴所求直线方程为.【小问2详解】由(1),P到的距离,∴以P为圆心,截所得弦长为8的圆的半径,∴所求圆的方程为.21、(1);(2)-1【解析】(1)由题设可得,求出参数b,即可写出椭圆C的方程;(2)延长线段DB交椭圆C于点,根据对称性设B,为,,联立椭圆方程,应用韦达定理并结合已知条件可得,直线与圆相切可得,进而求参数t,即可求直线BD的斜率.【小问1详解】因为圆与x轴的交点分别为,,所以椭圆C的焦点分别为,,∴,根据条件得,∴,故椭圆C的方程为【小问2详解】延长线段DB交椭圆C于点,因直线BD与直线BE的倾斜角互补,根据对称性得由条件可设B的坐标为,设D,的纵坐标分别为,,直线的方程为,由于,即,所以由得:∴,∴①,②,由①得:,代入②得,∴∵直线与圆相切,∴,即∴,解得,又,∴,故,即直线BD斜率【点睛】关键点点睛:将已知线段的长度关系转化为D,的纵坐标的数量关系,设直线的含参方程,联立椭圆方程及其与圆的相切求参数关系,进而求参数即可.22、(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版住宅小区物业服务合同书
- 二零二五年度个人短期周转借款保险合同3篇
- 2024年度股权收益权质押担保合同印花税缴纳通知3篇
- 2025版中山市二手房买卖合同全面保障版2篇
- 2024年网络安全产品采购合同
- 2025年度板房租赁合同及临时设施拆除与清理合同3篇
- 2024年酒店餐饮部承包合同
- 2025年度民办学校教师招聘、聘用及解聘合同3篇
- 二零二五年度仓储货物质押贷款服务协议3篇
- 2024年度全国物流企业统一运费结算标准协议书2篇
- 临床麻醉学试卷及答案
- 混合性焦虑和抑郁障碍的护理查房
- MOOC 发展心理学-北京大学 中国大学慕课答案
- 克罗恩病病例分享
- 《养老护理员》-课件:协助老年人转换体位
- 山东省高中生物教学大纲
- 2024中考语文《水浒传》历年真题(解析版)
- 接地电阻测试仪的操作课件
- 《机修工基础培训》课件
- 品质黄焖鸡加盟活动策划
- DLT 754-2013 母线焊接技术规程
评论
0/150
提交评论