版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年福建省龙岩市连城一中数学高二上期末质量跟踪监视模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知分别是椭圆的左,右焦点,点M是椭圆C上的一点,且的面积为1,则椭圆C的短轴长为()A.1 B.2C. D.42.观察:则第行的值为()A. B.C. D.3.若函数,(其中,)的最小正周期是,且,则()A. B.C. D.4.直线平分圆的周长,过点作圆的一条切线,切点为,则()A.5 B.C.3 D.5.已知直线在两个坐标轴上的截距之和为7,则实数m的值为()A.2 B.3C.4 D.56.已知双曲线离心率为2,过点的直线与双曲线C交于A,B两点,且点P恰好是弦的中点,则直线的方程为()A. B.C. D.7.已知双曲线的左、右焦点分别为,半焦距为c,过点作一条渐近线的垂线,垂足为P,若的面积为,则该双曲线的离心率为()A.3 B.2C. D.8.《米老鼠和唐老鸭》这部动画给我们的童年带来了许多美好的回忆,令我们印象深刻.如图所示,有人用3个圆构成米奇的简笔画形象.已知3个圆方程分别为:圆圆,圆若过原点的直线与圆、均相切,则截圆所得的弦长为()A. B.C. D.9.已知两条直线:,:,且,则的值为()A.-2 B.1C.-2或1 D.2或-110.已知函数有两个不同的零点,则实数的取值范围是()A B.C. D.11.已知直线l经过,两点,则直线l的倾斜角是()A.30° B.60°C.120° D.150°12.已知四面体中,,若该四面体的外接球的球心为,则的面积为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图所示,在平行六面体中,,若,则___________.14.甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现同时从甲、乙两口袋中各任取一个球交换放入对方口袋,共进行了2次这样的操作后,甲口袋中恰有2个黑球的概率为__________________.15.中国古代《易经》一书中记载,人们通过在绳子上打结来记录数量,即“结绳计数”,如图,一位古人在从右到左依次排列的红绳子上打结,满三进一,用来记录每年进的钱数.由图可得,这位古人一年的收入的钱数为___________.16.如图,设正方形ABCD与正方形ABEF的边长都为1,若平面ABCD,则异面直线AC与BF所成角的大小为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)等差数列中,,(1)求数列的通项公式;(2)若满足数列为递增数列,求数列前项和18.(12分)2021年7月25日,在东京奥运会自行车公路赛中,奥地利数学女博士安娜·基秣崔天以3小时52分45秒的成绩获得冠军,震惊了世界!广大网友惊呼“学好数理化,走遍天下都不怕”.某市对中学生的体能测试成绩与数学测试成绩进行分析,并从中随机抽取了200人进行抽样分析,得到下表(单位:人):体能一般体能优秀合计数学一般5050100数学优秀4060100合计90110200(1)根据以上数据,能否在犯错误的概率不超过0.10的前提下认为“体能优秀”还是“体能一般”与数学成绩有关?(结果精确到小数点后两位)(2)①现从抽取的数学优秀的人中,按“体能优秀”与“体能一般”这两类进行分层抽样抽取10人,然后,再从这10人中随机选出4人,求其中至少有2人是“体能优秀”的概率;②将频率视为概率,以样本估计总体,从该市中学生中随机抽取10人参加座谈会,记其中“体能优秀”的人数为X,求X的数学期望和方差参考公式:,其中参考数据:0.150.100.050.250.0102.0722.7063.8415.0246.63519.(12分)设:实数满足,:实数满足.(1)若,且为真,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围.20.(12分)在下列所给的三个条件中任选一个,补充在下面的问题中,并加以解答①过(-1,2);②与直线平行;③与直线垂直问题:已知直线过点M(3,5),且______(1)求的方程;(2)若与圆相交于点A、B,求弦AB的长21.(12分)已知函数(1)求曲线在点(e,)的切线方程;(2)求函数的单调区间.22.(10分)已知函数.(1)当时,求的单调区间与极值;(2)若在上有解,求实数a的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】首先分别设,,再根据椭圆的定义和性质列出等式,即可求解椭圆的短轴长.【详解】设,,所以,即,即,得,短轴长为.故选:B2、B【解析】根据数阵可知第行为,利用等差数列求和,即可得到答案;【详解】根据数阵可知第行为,,故选:B3、B【解析】利用余弦型函数的周期公式可求得的值,由结合的取值范围可求得的值.【详解】由已知可得,且,因此,.故选:B.4、B【解析】根据圆的性质,结合圆的切线的性质进行求解即可.【详解】由,所以该圆的圆心为,半径为,因为直线平分圆的周长,所以圆心在直线上,故,因此,,所以有,所以,故选:B5、C【解析】求出直线方程在两坐标轴上的截距,列出方程,求出实数m的值.【详解】当时,,故不合题意,故,,令得:,令得:,故,解得:.故选:C6、C【解析】运用点差法即可求解【详解】由已知得,又,,可得.则双曲线C的方程为.设,,则两式相减得,即.又因为点P恰好是弦的中点,所以,,所以直线的斜率为,所以直线的方程为,即.经检验满足题意故选:C7、D【解析】根据给定条件求出,再计算面积列式计算作答.【详解】依题意,点,由双曲线对称性不妨取渐近线,即,则,令坐标原点为O,中,,又点O是线段的中点,因此,,则有,即,,,所以双曲线的离心率为故选:D8、A【解析】设直线,利用直线与圆相切,求得斜率,再利用弦长公式求弦长【详解】设过点的直线.由直线与圆、圆均相切,得解得(1).设点到直线的距离为则(2).又圆的半径直线截圆所得弦长结合(1)(2)两式,解得9、B【解析】两直线平行,倾斜角相等,斜率均不存在或斜率存在且相等,据此即可求解.【详解】:,:斜率不可能同时不存在,∴和斜率相等,则或,∵m=-2时,和重合,故m=1.另解:,故m=1.故选:B.10、A【解析】分离参数,求函数的导数,根据函数有两个零点可知函数的单调性,即可求解.【详解】由题意得有两个零点令,则且所以,在上为增函数,可得,当,在上单调递减,可得,即要有两个零点有两个零点,实数的取值范围是.故选:A【点睛】方法点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解11、C【解析】设直线l的倾斜角为,由题意可得直线l的斜率,即,∵,∴直线l的倾斜角为,故选:.12、C【解析】根据四面体的性质,结合线面垂直的判定定理、球的性质、正弦定理进行求解即可.【详解】由图设点为中点,连接,由,所以,面,则面,且,所以球心面,所以平面与球面的截面为大圆,延长线与此大圆交于点.在三角形中,由,所以,由正弦定理知:三角形的外接圆半径为,设三角形的外接圆圆心为点,则面,有,则,设的外接圆圆心为点,则面,由正弦定理知:三角形PAB的外接圆半径为,所以,又三角形中,,所以为的角平分线,则,在直角三角形OMD中,,在直角三角形OED中,,在三角形中,取中点,由,所以,故选:C.【点睛】关键点睛:运用正弦定理、勾股定理、线面垂直的判定定理是解题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】题中几何体为平行六面体,就要充分利用几何体的特征进行转化,,再将转化为,以及将转化为,,总之等式右边为,,,从而得出,.【详解】解:因为,又,所以,,则.故答案为:2.【点睛】要充分利用几何体的几何特征,以及将作为转化的目标,从而得解.14、【解析】分两类:两次都互相交换白球的概率和第一次甲交出黑球收到白球,且第二次甲交出白球收到黑球的概率求和可得答案.【详解】分两类:①两次都互相交换白球的概率为;②第一次甲交出黑球收到白球,且第二次甲交出白球收到黑球的概率为.故答案为:.15、25【解析】将原问题转化为三进制计算,即可求解【详解】解:由题意可得,从左到右的数字依次为221,即古人一年的收入的钱数为故答案为:16、##【解析】建立空间直角坐标系,利用空间向量法求出异面直线所成角;【详解】解:如图建立空间直角坐标系,则、、、,所以,,设直线与所成角为,则,因为,所以;故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)或(2)【解析】(1)利用等差数列通项公式,可构造方程组求得,由此可得通项公式;(2)由(1)可得,利用分组求和法,结合等差等比求和公式可得结果.【小问1详解】设等差数列的公差为,则,解得:或,当时,;当时,.综上,或【小问2详解】由(1)当数列为递增数列,则,设,.18、(1)不能,理由见解析;(2)①,②,【解析】(1)运用公式求出,比较得出结论.(2)①先用分层抽样得到“体能优秀”与“体能一般”的人数,再利用公式计算至少有2人是“体能优秀”的概率.②根据已知条件知此分布列为二项分布,故利用数学期望和方差的公式即可求出答案【小问1详解】由表格的数据可得,,故不能在犯错误的概率不超过0.10的前提下认为“体能优秀”还是“体能一般”与数学成绩有关.【小问2详解】①在数学优秀的人群中,“体能优秀”与“体能一般”的比例为“体能一般”的人数为,“体能优秀”的人数为故再从这10人中随机选出4人,其中至少有2人是“体能优秀”的概率为.②由题意可得,随机抽取一人“体能优秀”的概率为,且故,19、(1)(2)【解析】(1)首先分别求出、为真时参数的取值范围,再由为真,取并集即可;(2)首先解一元二次不等式,依题意是的必要不充分条件,则可推出,而不能推出,即可得到不等式组,解得即可;【小问1详解】解:当时,,即,解得,即为真时,实数的取值范围为实数满足,即,解得:,即为真时,实数的取值范围为因,所以,即;【小问2详解】解:由,即,所以,因为是的充分不必要条件,所以是的必要不充分条件,则可推出,而不能推出,则,解得;20、(1)(2)【解析】(1)可依次根据直线方程的点斜式、“两直线平行,斜率相等”、“两直线垂直,斜率相乘为-1”求直线l的方程;(2)利用垂径定理即可求圆的弦长.【小问1详解】选条件①:∵直线过点(3,5)及(-1,2),∴直线的斜率为,依题意,直线的方程为,即;选条件②:∵直线的斜率为,直线与直线平行,∴直线的斜率为,依题意,直线的方程为;即;选条件③:∵直线的斜率为,直线与直线垂直,∴直线的斜率为,依题意,直线的方程为,即;【小问2详解】圆心为(2,3),半径为2,圆心到直线的距离为∴21、(1);(2)在单调递减,在单调递增【解析】(1)求出函数的导数,求出切线的斜率,切点坐标,然后求解切线方程;(2)利用导函数的符号,判断函数的单调性,求解函数的单调区间即可【详解】解:(1)由得,所以切线斜率为切点坐标为,所以切线方程为,即;(2),令,得当时,;当时,,∴在单调递减,在单调递增22、(1)在上单调递减,在上单调递增,函数有极小值,无极大值(2)【解析】(1)利用导数的正负判断函数的单调性,然后由极值的定义求解即可;(2)分和两种情况分析求解,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版安全防范设备安装与保安人员劳务合同2篇
- 2025版太阳能光伏发电系统安装与安全检验合同3篇
- 《养老保险宣传方案》课件
- 2025年度个人投资理财合同4篇
- 2025版万科物业知识共享与培训服务合同3篇
- 2025版户外广告牌清洗及维护服务合同3篇
- 2025版司机车辆维护保养合同3篇
- 二零二五年度大数据分析服务借款合同协议2篇
- 2025年度铝单板智能制造技术改造项目合同4篇
- 2025版我国行政救济制度优化与执行监督合同3篇
- 2025-2030年中国陶瓷电容器行业运营状况与发展前景分析报告
- 二零二五年仓储配送中心物业管理与优化升级合同3篇
- 2025届厦门高三1月质检期末联考数学答案
- 音乐作品录制许可
- 江苏省无锡市2023-2024学年高三上学期期终教学质量调研测试语文试题(解析版)
- 拉萨市2025届高三第一次联考(一模)英语试卷(含答案解析)
- 开题报告:AIGC背景下大学英语教学设计重构研究
- 师德标兵先进事迹材料师德标兵个人主要事迹
- 连锁商务酒店述职报告
- 《实践论》(原文)毛泽东
- 第三单元名著导读《红星照耀中国》(公开课一等奖创新教学设计+说课稿)
评论
0/150
提交评论