2023-2024学年鄂西北四校数学高二上期末检测模拟试题含解析_第1页
2023-2024学年鄂西北四校数学高二上期末检测模拟试题含解析_第2页
2023-2024学年鄂西北四校数学高二上期末检测模拟试题含解析_第3页
2023-2024学年鄂西北四校数学高二上期末检测模拟试题含解析_第4页
2023-2024学年鄂西北四校数学高二上期末检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年鄂西北四校数学高二上期末检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.盘子里有肉馅、素馅和豆沙馅的包子共个,从中随机取出个,若是肉馅包子的概率为,不是豆沙馅包子的概率为,则素馅包子的个数为()A. B.C. D.2.函数在点处的切线方程的斜率是()A. B.C. D.3.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校男教师的人数为()A.167 B.137C.123 D.1134.已知,是双曲线的左,右焦点,经过点且与x轴垂直的直线与双曲线的一条渐近线相交于点A,且A在第三象限,四边形为平行四边形,为直线的倾斜角,若,则该双曲线离心率的取值范围是()A. B.C. D.5.设拋物线的焦点为F,准线为l,P为拋物线上一点,,A为垂足.如果直线AF的斜率是,那么()A B.C.16 D.86.方程表示的曲线经过的一点是()A. B.C. D.7.圆与直线的位置关系是()A.相交 B.相切C.相离 D.不能确定8.已知F是双曲线的右焦点,过F且垂直于x轴的直线交E于A,B两点,若E的渐近线上恰好存在四个点,,,,使得,则E的离心率的取值范围是()A. B.C. D.9.函数的最大值为()A.32 B.27C.16 D.4010.新冠肺炎疫情的发生,我国的三大产业均受到不同程度的影响,其中第三产业中的各个行业都面临着很大的营收压力.2020年7月国家统计局发布了我国上半年国内经济数据,如图所示,图1为国内三大产业比重,图2为第三产业中各行业比重下列关于我国上半年经济数据的说法正确的是()A.第一产业的生产总值与第三产业中“其他服务业”的生产总值基本持平B.第一产业的生产总值超过第三产业中“金融业”的生产总值C.若“住宿和餐饮业”生产总值为7500亿元,则“房地产”生产总值为22500亿元D.若“金融业”生产总值为41040亿元,则第二产业生产总值为166500亿元11.已知直线在两个坐标轴上的截距之和为7,则实数m的值为()A.2 B.3C.4 D.512.中,三边长之比为,则为()A.锐角三角形 B.直角三角形C.钝角三角形 D.不存在这样的三角形二、填空题:本题共4小题,每小题5分,共20分。13.在平面直角坐标系中,双曲线左、右焦点分别为,,点M是双曲线右支上一点,,则双曲线的渐近线方程为___________.14.若圆C:与圆D2的公共弦长为,则圆D的半径为___________.15.已知椭圆的左、右焦点分别为F1,F2,P为椭圆上一点,且(O为坐标原点).若,则椭圆的离心率为________16.已知抛物线C:,经过点P(4,1)的直线l与抛物线C相交于A,B两点,且点P恰为AB的中点,F为抛物线的焦点,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,动点,满足,记点的轨迹为(1)请说明是什么曲线,并写出它的方程;(2)设不过原点且斜率为的直线与交于不同的两点,,线段的中点为,直线与交于两点,,请判断与的关系,并证明你的结论18.(12分)如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,侧棱底面ABCD,,,E为PB中点,F为PC上一点,且(1)求证:;(2)求平面DEF与平面ABCD所成锐二面角的余弦值19.(12分)已知数列中,,().(1)求证:是等比数列,并求的通项公式;(2)数列满足,求数列的前项和为.20.(12分)命题p:直线l:与圆C:有公共点,命题q:双曲线的离心率(1)若p,q均为真命题,求实数m的取值范围;(2)若为真,为假,求实数m的取值范围21.(12分)已知三点共线,其中是数列中的第n项.(1)求数列的通项;(2)设,求数列的前n项和.22.(10分)已知椭圆焦距为,点在椭圆C上(1)求椭圆C的方程;(2)过点的直线与C交于M,N两点,点R是直线上任意一点,设直线的斜率分别为,若,求的方程

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】计算出肉馅包子和豆沙馅包子的个数,即可求得素馅包子的个数.【详解】由题意可知,肉馅包子的个数为,从中随机取出个,不是豆沙馅包子的概率为,则该包子是豆沙馅包子的概率为,所以,豆沙馅包子的个数为,因此,素馅包子的个数为.故选:C.2、D【解析】求解导函数,再由导数的几何意义得切线的斜率.【详解】求导得,由导数的几何意义得,所以函数在处切线的斜率为.故选:D3、C【解析】根据图形分别求出初中部和高中部男教师的人数,最后相加即可.【详解】初中部男教师的人数为110×(170%)=33;高中部男教师的人数为150×60%=90,∴该校男教师的人数为33+90=123.故选:C.4、B【解析】根据双曲线的几何性质和平行四边形的性质可知也在双曲线的渐近线上,且在第一象限,从而由可知轴,所以在直角三角形中,,由,可得的范围,进而转化为,的不等式,结合可得离心率的取值范围【详解】解:因为经过点且与轴垂直的直线与双曲线的一条渐近线相交于点,且在第三象限,四边形为平行四边形,所以由双曲线的对称性可知也在双曲线的渐近线上,且在第一象限,由轴,可知轴,所以,在直角三角形中,,因为,所以,,即,所以,即,即,故,所以.故选:B5、D【解析】由题可得方程,进而可得点坐标及点坐标,利用抛物线定义即求【详解】∵抛物线方程为,∴焦点F(2,0),准线l方程为x=−2,∵直线AF的斜率为,直线AF的方程为,由,可得,∵PA⊥l,A为垂足,∴P点纵坐标为,代入抛物线方程,得P点坐标为,∴.故选:D.6、C【解析】当时可得,可得答案.【详解】当时可得所以方程表示的曲线经过的一点是,且其它点都不满足方程,故选:C7、B【解析】用圆心到直线的距离与半径的大小判断【详解】解:圆的圆心到直线的距离,等于圆的半径,所以圆与直线相切,故选:B8、D【解析】由题意以AB为直径的圆M与双曲线E的渐近线有四个不同的交点,则必有,又当圆M经过原点时此时以AB为直径的圆M上与双曲线E的渐近线有三个不同的交点,不满足,从而得出答案.【详解】由题意,由得,双曲线的渐近线方程为所以,由,可知,,,在以AB为直径的圆M上,圆的半径为即以AB为直径的圆M与双曲线E的渐近线有四个不同的交点当圆M与渐近线相切时,圆心到渐近线的距离,则必有,即,则双曲线E的离心率,所以又当圆M经过原点时,,解得E的离心率为,此时以AB为直径圆M与双曲线E的渐近线有三个不同的交点,不满足条件.所以E的离心率的取值范围是.故选:D9、A【解析】利用导数即可求解.【详解】因为,所以当时,;当时,.所以函数在上单调递增;在上单调递增,,因此,的最大值为.故选:A10、D【解析】根据扇形图及柱形图中的各产业与各行业所占比重,得到第三产业中“其他服务业”及“金融业”的生产总值占总生产总值的比重,进而比较出AB选项,利用“住宿和餐饮业”生产总值和“房地产”生产总值的比值,求出“房地产”生产总值,判断出C选项,利用第三产业中“金融业”的生产总值与第二产业的生产总值比值,求出第二产业生产总值,判断D选项.【详解】A选项,第三产业中“其他服务业”的生产总值占总生产总值的,因为,所以第三产业中“其他服务业”的生产总值明显高于第一产业的生产总值,A错误;B选项,第三产业中“金融业”的生产总值占总生产总值的,因为,故第一产业的生产总值少于第三产业中“金融业”的生产总值,B错误;“住宿和餐饮业”生产总值和“房地产”生产总值的比值为,若“住宿和餐饮业”生产总值为7500亿元,则“房地产”生产总值为亿元,故C错误;第三产业中“金融业”的生产总值占总生产总值的,与第二产业的生产总值比值为,若“金融业”生产总值为41040亿元,则第二产业生产总值为166500亿元,D正确.故选:D11、C【解析】求出直线方程在两坐标轴上的截距,列出方程,求出实数m的值.【详解】当时,,故不合题意,故,,令得:,令得:,故,解得:.故选:C12、C【解析】利用余弦定理可求得最大角的余弦值小于零,由此可知最大角为钝角.【详解】设三边分别为,,,中的最大角为,,为钝角,为钝角三角形.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】首先根据已知条件得到,再结合双曲线的几何性质求解即可.【详解】如图所示:,,所以,即.设,则,.即,,,,所以,渐近线方程为.故答案为:14、【解析】首先根据圆与圆的位置关系得到公共弦方程,再根据弦长求解即可.【详解】根据得公共弦方程为:.因为公共弦长为,所以直线过圆的圆心.所以,解得.故答案为:15、##【解析】由向量的数量积得,从而得,利用勾股定理和椭圆的定义可得的等式,从而求得离心率【详解】,所以,又,所以是直角三角形,,,又,,所以,,,所以故答案为:16、9【解析】过A、、作准线的垂线且分别交准线于点、、,根据抛物线的定义可知,由梯形的中位线的性质得出,进而可求出的结果.【详解】由抛物线,可知,则,所以抛物线的焦点坐标为,如图,过点A作垂直于准线交准线于,过点作垂直于准线交准线于,过点作垂直于准线交准线于,由抛物线的定义可得,再根据为线段的中点,而四边形为梯形,由梯形的中位线可知,则,所以.故答案为:9.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)椭圆,(2),证明见解析【解析】(1)结合椭圆第一定义直接判断即可求出的轨迹为;(2)设直线的方程为,,,联立椭圆方程,写出韦达定理;由中点公式求出点,进而得出直线方程,联立椭圆方程求出,结合弦长公式可求,可转化为,结合韦达定理可化简,进而得证.【小问1详解】设,,则因为,满足,即动点表示以点,为左、右焦点,长轴长为4,焦距为的椭圆,其轨迹的方程为;【小问2详解】可以判断出,下面进行证明:设直线的方程为,,,由方程组,得①,方程①判别式为,由,即,解得且由①得,,所以点坐标为,直线方程为,由方程组,得,,所以又所以.18、(1)证明见解析(2)【解析】(1)依题意可得,再由,即可得到平面,从而建立空间直角坐标系,利用空间向量法证明即可;(2)利用空间向量法求出二面角的余弦值;【小问1详解】证明:因为平面,平面,平面,则,,又,因为,,平面,所以平面,故以点为坐标原点,建立空间直角坐标系如图所示,则,0,,,0,,,1,,,1,,,0,,,所以,则,所以,故;【小问2详解】解:解:因为,设平面的法向量为,则,即,令,则,,故,因为底面,所以的一个法向量为,所以,故平面与平面夹角的余弦值为19、(1)(2)【解析】由已知式子变形可得是以为首项,为公比的等比数列,由等比数列的通项公式易得利用错位相减法,得到数列的前项和为解析:(1)由,()知,又,∴是以为首项,为公比的等比数列,∴,∴(2),,两式相减得,∴点睛:本题主要考查数列的证明,错位相减法等基础知识,考查学生的分析问题解决问题的能力,转化能力和计算能力.第一问中将已知的递推公式进行变形,转化为的形式来证明,还可以根据等比数列的定义来证明;第二问,将第一问中得到的结论代入,先得到的表达式,利用错位相减法,即可得到数列的前项和为20、(1),;(2).【解析】(1)求出,成立的等价条件,即可求实数的取值范围;(2)若“”为假命题,“”为真命题,则、一真一假,当真假时,求出的取值范围,当假真时,求出的取值范围,然后取并集即可得答案【小问1详解】若命题为真命题,则,解得:,若命题为真命题,则且,,解得,∴,均为真命题,实数的取值范围是,;【小问2详解】若为真,为假,则、一真一假;①当真假时,即“”且“或”,则此时的取值范围是;当假真时,即“或”且“”,则此时的取值范围是;综上,的取值范围是21、(1)(2)【解析】(1)由三点共线可知斜率相等,即可得出答案;(2)由题可得,利用错位相减法即可求出答案.【小问1详

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论