2023-2024学年广州市岭南中学数学高二上期末教学质量检测试题含解析_第1页
2023-2024学年广州市岭南中学数学高二上期末教学质量检测试题含解析_第2页
2023-2024学年广州市岭南中学数学高二上期末教学质量检测试题含解析_第3页
2023-2024学年广州市岭南中学数学高二上期末教学质量检测试题含解析_第4页
2023-2024学年广州市岭南中学数学高二上期末教学质量检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年广州市岭南中学数学高二上期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.以椭圆+=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线方程是()A. B.C. D.2.经过点作圆的弦,使点为弦的中点,则弦所在直线的方程为A. B.C. D.3.在等差数列中,若,则()A.6 B.9C.11 D.244.设是等差数列,是其公差,是其前n项的和.若,,则下列结论不正确的是()A. B.C. D.与均为的最大值5.用反证法证明“若a,b∈R,,则a,b不全为0”时,假设正确的是()A.a,b中只有一个为0 B.a,b至少一个不为0C.a,b至少有一个为0 D.a,b全为06.如图,在正方体中,()A. B.C. D.7.抛物线的焦点坐标A. B.C. D.8.已知等比数列的前n项和为,且,则()A.20 B.30C.40 D.509.我国的刺绣有着悠久的历史,如图,(1)(2)(3)(4)为刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形个数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第个图形包含个小正方形,则的表达式为()A. B.C. D.10.已知线段AB的端点B在直线l:y=-x+5上,端点A在圆C1:上运动,线段AB的中点M的轨迹为曲线C2,若曲线C2与圆C1有两个公共点,则点B的横坐标的取值范围是()A.(-1,0) B.(1,4)C.(0,6) D.(-1,5)11.某手机上网套餐资费:每月流量500M以下(包含500M),按20元计费;超过500M,但没超过1000M(包含1000M)时,超出部分按0.15元/M计费;超过1000M时,超出部分按0.2元/M计费,流量消费累计的总流量达到封顶值(15GB)则暂停当月上网服务.若小明使用该上网套餐一个月的费用是100元,则他的上网流量是()A.800M B.900MC.1025M D.1250M12.已知函数,则下列说法正确的是()A.的最小正周期为 B.的图象关于直线C.的一个零点为 D.在区间的最小值为1二、填空题:本题共4小题,每小题5分,共20分。13.已知某农场某植物高度,且,如果这个农场有这种植物10000棵,试估计该农场这种植物高度在区间上的棵数为______.参考数据:若,则,,.14.总体由编号为01,02,…,30的30个个体组成.选取方法是从下面随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为____________.66065747173407275017362523611665118918331119921970058102057864532345647615.在数列中,,,则___________.16.千年一遇对称日,万事圆满在今朝,年月日又是一个难得的“世界完全对称日”(公历纪年日期中数字左右完全对称的日期).数学上把这样的对称自然数叫回文数,两位数的回文数共有个(),其中末位是奇数的又叫做回文奇数,则在内的回文奇数的个数为___三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(Ⅰ)求的单调区间和最值;(Ⅱ)设,证明:当时,18.(12分)已知函数,曲线在点处的切线与直线垂直(其中为自然对数的底数)(1)求的值;(2)是否存在常数,使得对于定义域内的任意,恒成立?若存在,求出的值;若不存在,请说明理由19.(12分)已知命题p:实数x满足(其中);命题q:实数x满足(1)若,为真命题,求实数x的取值范围;(2)若p是q的充分条件,求实数的取值范围20.(12分)如图,在直三棱柱中,,,D为的中点(1)求证:平面;(2)求平面与平面的夹角的余弦值;(3)若E为的中点,求与所成的角21.(12分)已知点关于直线的对称点为Q,以Q为圆心的圆与直线相交于A,B两点,且(1)求圆Q的方程;(2)过坐标原点O任作一直线交圆Q于C,D两点,求证:为定值22.(10分)已知函数,(1)讨论的单调性;(2)若时,对任意都有恒成立,求实数的最大值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据椭圆的几何性质求椭圆的焦点坐标和长轴端点坐标,由此可得双曲线的a,b,c,再求双曲线的标准方程.【详解】∵椭圆的方程为+=1,∴椭圆的长轴端点坐标为,,焦点坐标为,,∴双曲线的焦点在y轴上,且a=1,c=2,∴b2=3,∴双曲线方程为,故选:B.2、A【解析】由题知为弦AB的中点,可得直线与过圆心和点的直线垂直,可求的斜率,然后用点斜式求出的方程【详解】由题意知圆的圆心为,,由,得,∴弦所在直线的方程为,整理得.选A.【点睛】本题考查直线与圆的位置关系,直线的斜率,直线的点斜式方程,属于基础题3、B【解析】根据等差数列的通项公式的基本量运算求解【详解】设的公差为d,因为,所以,又,所以故选:B4、C【解析】由已知条件可以得出,,,即可得公差,再利用等差数列的性质以及前n项的和的性质可判断每个选项的正误,进而可得正确选项.【详解】由可得,由可得,故选项B正确;由可得,因为公差,故选项A正确,,所以,故选项C不正确;由于是等差数列,公差,,,,所以都是的最大值,故选项D正确;所以选项C不正确,故选:C5、D【解析】把要证的结论否定之后,即得所求的反设【详解】由于“a,b不全为0”的否定为:“a,b全为0”,所以假设正确的是a,b全为0.故选:D6、B【解析】根据正方体的性质,结合向量加减法的几何意义有,即可知所表示的向量.【详解】∵,而,∴,故选:B7、B【解析】由抛物线方程知焦点在x轴正半轴,且p=4,所以焦点坐标为,所以选B8、B【解析】利用等比数列的前n项和公式即可求解.【详解】设等比数列的首项为,公比为,则,由得,即,解得或(舍),且代入①得,则,所以.故选:B.9、D【解析】先分别观察给出正方体的个数为:1,,,,总结一般性的规律,将一般性的数列转化为特殊的数列再求解【详解】解:根据前面四个发现规律:,,,,,累加得:,,故选:【点睛】本题主要考查了归纳推理,属于中档题10、D【解析】设,AB的中点,由中点坐标公式求得,代入圆C1:得点点M的轨迹方程,再根据两圆的位置关系建立不等式,代入,求解即可得点B的横坐标的取值范围.【详解】解:设,AB的中点,则,所以,又因为端点A在圆C1:上运动,所以,即,因为曲线C2与圆C1有两个公共点,所以,又因B在直线l:y=-x+5上,所以,所以,整理得,即,解得,所以点B的横坐标的取值范围是,故选:D.11、C【解析】根据已知条件列方程,化简求得小明的上网流量.【详解】显然小明上网流量超过了1000M但远远没达到封顶值,假设超出部分为M,由得.故选:C12、D【解析】根据余弦函数的图象与性质判断其周期、对称轴、零点、最值即可.【详解】函数,周期为,故A错误;函数图像的对称轴为,,,不是对称轴,故B错误;函数的零点为,,,所以不是零点,故C错误;时,,所以,即,所以,故D正确.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、1359【解析】由已知求得,则,结合已知求得,乘以10000得答案【详解】解:由,得,又,,则,估计该农场这种植物高度在区间,上的棵数为故答案为:135914、23【解析】根据随机表,由编号规则及读表位置列举出前5个符合要求的编号,即可得答案.【详解】由题设,依次得到的数字为57,47,17,34,07,27,50,17,36,25,23,……根据编号规则符合要求的依次为17,07,27,25,23,……所以第5个个体编号为23.故答案为:23.15、##.【解析】由递推关系取可求,再取求,取求.详解】由分别取,2,3可得,,,又,∴,,,故答案为:.16、【解析】根据分类加法计数原理,结合题中定义、组合的定义进行求解即可.【详解】两位数的回文奇数有,共个,三位数的回文奇数有,四位数的回文奇数有,所以在内的回文奇数的个数为,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)单调递减区间为,单调递增区间为;最小值为,无最大值;(Ⅱ)证明见解析【解析】(Ⅰ)根据导函数的正负即可确定单调区间,由单调性可得最值点;(Ⅱ)构造函数,利用导数可确定单调性,结合的正负可确定的零点的范围,进而得到结论.【详解】(Ⅰ)由题意得:定义域为,,当时,;当时,;的单调递减区间为,单调递增区间为的最小值为,无最大值(Ⅱ)设,则,令得:当时,;当时,,在上单调递增;在上单调递减由(Ⅰ)知:,可得:,,可得:,即又,当时,,即当时,【点睛】思路点睛:本题考查导数在研究函数中的应用,涉及到函数单调性和最值的求解、利用导数证明不等式等知识;利用导数证明不等式的关键是能够通过移项构造的方式,构造出新的函数,通过的单调性,结合零点所处的范围可分析得到结果.18、(1)2;(2)存在,.【解析】(1)对函数求导,利用得的值;(2)讨论和分离参数,构造新函数求解最值即可求解【详解】解:(1),又由题意有(2)由(1)知,此时,由或,所以函数的单调减区间为和要恒成立,即①当时,,则要恒成立,令,再令,所以在内递减,所以当时,,故,所以在内递增,;②当时,lnx>0,则要恒成立,由①可知,当时,,所以内递增,所以当时,,故,所以在内递增,综合①②可得,即存在常数满足题意19、(1)(2)【解析】(1)由得命题p:,然后由为真命题求解;(2)由得,再根据是的充分条件求解.小问1详解】当时,,解得:,由为真命题,,解得;【小问2详解】由(其中)可得,因为是的充分条件,则,解得:20、(1)证明见解析(2)(3)【解析】(1)连接,交于O,连接OD,根据中位线的性质,可证,根据线面平行的判定定理,即可得证;(2)如图建系,求得各点坐标,进而可求得平面与平面法向量,根据二面角的向量求法,即可得答案;(3)求得坐标,根据线线角的向量求法,即可得答案.【小问1详解】连接,交于O,连接OD,则O为的中点,在中,因为O、D分别为、BC中点,所以,又因为平面,平面,所以平面【小问2详解】由题意得,两两垂直,以B为原点,为x,y,z轴正方向建系,如图所示:设,则,所以,则,,因为平面在平面ABC内,且平面ABC,所以即为平面的一个法向量,设平面的一个法向量为,则,所以,令,则,所以法向量,所以,由图象可得平面与平面的夹角为锐角,所以平面与平面的夹角的余弦值为【小问3详解】由(2)可得,设与所成的角为,则,解得,所以与所成的角为21、(1)(2)证明见解析【解析】(1)先求出点坐标,然后根据圆心到直线的距离公式及的值求出半径即可求得圆的方程.(2)设出直线方程,联立圆和直线方程利用韦达定理来求解.【小问1详解】解:点关于直线的对称点Q为由Q到直线的距离,所以所以圆的方程为【小问2详解】当直线CD斜率不存在时,,所以.当直线CD斜率存在时,设为k,则直线为,记,联

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论