![2023-2024学年安徽省黄山市徽州区一中高二数学第一学期期末学业水平测试试题含解析_第1页](http://file4.renrendoc.com/view/0c0ed6c0a6e0cb0e476c66d476898dbb/0c0ed6c0a6e0cb0e476c66d476898dbb1.gif)
![2023-2024学年安徽省黄山市徽州区一中高二数学第一学期期末学业水平测试试题含解析_第2页](http://file4.renrendoc.com/view/0c0ed6c0a6e0cb0e476c66d476898dbb/0c0ed6c0a6e0cb0e476c66d476898dbb2.gif)
![2023-2024学年安徽省黄山市徽州区一中高二数学第一学期期末学业水平测试试题含解析_第3页](http://file4.renrendoc.com/view/0c0ed6c0a6e0cb0e476c66d476898dbb/0c0ed6c0a6e0cb0e476c66d476898dbb3.gif)
![2023-2024学年安徽省黄山市徽州区一中高二数学第一学期期末学业水平测试试题含解析_第4页](http://file4.renrendoc.com/view/0c0ed6c0a6e0cb0e476c66d476898dbb/0c0ed6c0a6e0cb0e476c66d476898dbb4.gif)
![2023-2024学年安徽省黄山市徽州区一中高二数学第一学期期末学业水平测试试题含解析_第5页](http://file4.renrendoc.com/view/0c0ed6c0a6e0cb0e476c66d476898dbb/0c0ed6c0a6e0cb0e476c66d476898dbb5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年安徽省黄山市徽州区一中高二数学第一学期期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“”是“函数在上无极值”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.在正方体中,为棱的中点,为棱的中点,则直线与平面所成角的正弦值为()A. B.C. D.3.设函数,则()A.1 B.5C. D.04.已知,若对于且都有成立,则实数的取值范围是()A. B.C. D.5.若曲线与曲线在公共点处有公共切线,则实数()A. B.C. D.6.某考点配备的信号检测设备的监测范围是半径为100米的圆形区域,一名工作人员持手机以每分钟50米的速度从设备正东方向米的处出发,沿处西北方向走向位于设备正北方向的处,则这名工作人员被持续监测的时长为()A.1分钟 B.分钟C.2分钟 D.分钟7.设是空间一定点,为空间内任一非零向量,满足条件的点构成的图形是()A.圆 B.直线C.平面 D.线段8.已知圆与圆没有公共点,则实数a的取值范围为()A. B.C. D.9.古希腊数学家阿波罗尼奥斯(约公元前262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,著作中有这样一个命题:平面内与两定点距离的比为常数k(k>0且k≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.已知O(0,0),A(3,0),动点P(x,y)满,则动点P轨迹与圆的位置关系是()A.相交 B.相离C.内切 D.外切10.已知,则“”是“直线与平行”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件11.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.即不充分也不必要条件12.将一枚骰子连续抛两次,得到正面朝上的点数分别为、,记事件A为“为偶数”,事件B为“”,则的值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知B(,0)是圆A:内一点,点C是圆A上任意一点,线段BC的垂直平分线与AC相交于点D.则动点D的轨迹方程为_________________.14.=______.15.设,分别是椭圆C:左、右焦点,点M为椭圆C上一点且在第一象限,若为等腰三角形,则M的坐标为___________16.我国古代,9是数字之极,代表尊贵之意,所以中国古代皇家建筑中包含许多与9相关的设计.例如,北京天坛圆丘的底面由扇环形的石板铺成(如图),最高一层是一块天心石,围绕它的第一圈有9块石板,从第二圈开始,每一圈比前一圈多9块,共有9圈,则前9圈的石板总数是__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(I)当时,求曲线在处的切线方程;(Ⅱ)若当时,,求的取值范围.18.(12分)已知的内角A,B,C所对的边分别为a,b,c,且(1)求;(2)若,求的面积的最大值19.(12分)已知数列满足(1)求数列的通项公式;(2)设,求数列的前n项和20.(12分)阿基米德(公元前年—公元前年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴与短半轴的乘积.已知平面直角坐标系中,椭圆:的面积为,两焦点与短轴的一个顶点构成等边三角形.(1)求椭圆的标准方程;(2)过点的直线与交于不同的两点,求面积的最大值.21.(12分)已知椭圆的离心率,过椭圆C的焦点且垂直于x轴的直线截椭圆所得到的线段的长度为1(1)求椭圆C的方程;(2)直线交椭圆C于A、B两点,若y轴上存在点P,使得是以AB为斜边的等腰直角三角形,求的面积的取值范围22.(10分)共享电动车(sharedev)是一种新的交通工具,通过扫码开锁,实现循环共享.某记者来到中国传媒大学探访,在校园喷泉旁停放了10辆共享电动车,这些电动车分为荧光绿和橙色两种颜色,已知从这些共享电动车中任取1辆,取到的是橙色的概率为,若从这些共享电动车中任意抽取3辆.(1)求取出的3辆共享电动车中恰好有一辆是橙色的概率;(2)求取出的3辆共享电动车中橙色的电动车的辆数X的分布列与数学期望.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据极值的概念,可知函数在上无极值,则方程的,再根据充分、必要条件判断,即可得到结果.【详解】由题意,可得,若函数在上无极值,所以对于方程,,解得.所以“”是“函数在上无极值”的必要不充分条件.故选:B.2、D【解析】建立空间直角坐标系,计算平面的法向量,利用线面角的向量公式即得解【详解】不妨设正方体的棱长为2,连接,以为坐标原点如图建立空间直角坐标系,则,,,,,,由于平面,平面,故又正方形,故平面故平面,所以为平面的一个法向量,故直线与平面所成角正弦值为.故选:D3、B【解析】由题意结合导数的运算可得,再由导数的概念即可得解.【详解】由题意,所以,所以原式等于.故选:B.4、D【解析】根据题意转化为对于且时,都有恒成立,构造函数,转化为时,恒成立,求得的导数,转化为在上恒成立,即可求解.【详解】由题意,对于且都有成立,不妨设,可得恒成立,即对于且时,都有恒成立,构造函数,可转化为,函数为单调递增函数,所以当时,恒成立,又由,所以在上恒成立,即在上恒成立,又由,所以,即实数取值范围为.故选:D5、A【解析】设公共点为,根据导数的几何意义可得出关于、的方程组,即可解得实数、的值.【详解】设公共点为,的导数为,曲线在处的切线斜率,的导数为,曲线在处的切线斜率,因为两曲线在公共点处有公共切线,所以,且,,所以,即解得,所以,解得,故选:A6、C【解析】以设备的位置为坐标原点,其正东方向为轴正方向,正北方向为轴正方向建立平面直角坐标系,求得直线和圆的方程,利用点到直线的距离公式和圆的弦长公式,求得的长,进而求得持续监测的时长.【详解】以设备的位置为坐标原点,其正东方向为轴正方向,正北方向为轴正方向建立平面直角坐标系,如图所示,则,,可得,圆记从处开始被监测,到处监测结束,因为到的距离为米,所以米,故监测时长为分钟故选:C.7、C【解析】根据法向量的定义可判断出点所构成的图形.【详解】是空间一定点,为空间内任一非零向量,满足条件,所以,构成的图形是经过点,且以为法向量的平面.故选:C.【点睛】本题考查空间中动点的轨迹,考查了法向量定义的理解,属于基础题.8、B【解析】求出圆、的圆心和半径,再由两圆没有公共点列不等式求解作答.【详解】圆的圆心,半径,圆的圆心,半径,,因圆、没有公共点,则有或,即或,又,解得或,所以实数a的取值范围为.故选:B9、A【解析】首先求得点的轨迹,再利用圆心距与半径的关系,即可判断两圆的位置关系.【详解】由条件可知,,化简为:,动点的轨迹是以为圆心,2为半径的圆,圆是以为圆心,为半径的圆,两圆圆心间的距离,所以两圆相交.故选:A10、A【解析】首先由两直线平行的充要条件求出参数的取值,再根据充分条件、必要条件的定义判断即可;【详解】因为直线与平行,所以,解得或,所以“”是“直线与平行”的充分不必要条件.故选:A.11、D【解析】根据充分条件、必要条件的判定方法,结合不等式的性质,即可求解.【详解】由,可得,即,当时,,但的符号不确定,所以充分性不成立;反之当时,也不一定成立,所以必要性不成立,所以是的即不充分也不必要条件.故选:D.12、B【解析】利用条件概率的公式求解即可.【详解】根据题意可知,若事件为“为偶数”发生,则、两个数均为奇数或均为偶数,其中基本事件数为,,,,,,,,,,,,,,,,,,一共个基本事件,∴,而A、同时发生,基本事件有当一共有9个基本事件,∴,则在事件A发生的情况下,发生的概率为,故选:二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用椭圆的定义可得轨迹方程.【详解】连接,由题意,,则,由椭圆的定义可得动点D的轨迹为椭圆,其焦点坐标为,长半轴长为2,故短半轴长为1,故轨迹方程为:.故答案为:.14、【解析】根据被积函数()表示一个半圆,利用定积分的几何意义即可得解.【详解】被积函数()表示圆心为,半径为2的圆的上半部分,所以.故答案为:.【点睛】本题考查了利用定积分的几何意义来求定积分,在用该方法求解时需注意被积函数的在给定区间内的函数值符号,本题属于中档题.15、【解析】先计算出,所以,利用余弦定理求出,即可求出,即得到M的横坐标为,代入椭圆C:求出.【详解】椭圆C:,所以.因为M在椭圆上,.因为M在第一象限,故.为等腰三角形,则,所以,由余弦定理可得.过M作MA⊥x轴于A,则所以,即M的横坐标为.因为M为椭圆C:上一点且在第一象限,所以,解得:所以M的坐标为.故答案为:16、405【解析】前9圈的石板数依次组成一个首项为9,公差为9的等差数列,三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(Ⅰ)先求的定义域,再求,,,由直线方程的点斜式可求曲线在处的切线方程为(Ⅱ)构造新函数,对实数分类讨论,用导数法求解.试题解析:(I)定义域为.当时,,曲线在处的切线方程为(II)当时,等价于设,则,(i)当,时,,故在上单调递增,因此;(ii)当时,令得.由和得,故当时,,在单调递减,因此.综上,的取值范围是【考点】导数的几何意义,利用导数判断函数的单调性【名师点睛】求函数的单调区间的方法:(1)确定函数y=f(x)定义域;(2)求导数y′=f′(x);(3)解不等式f′(x)>0,解集在定义域内的部分为单调递增区间;(4)解不等式f′(x)<0,解集在定义域内的部分为单调递减区间18、(1)(2)【解析】(1)由正弦定理将边化为角,结合三角函数的两角和的正弦公式,可求得答案;(2)由余弦定理结合基本不等式可求得,再利用三角形面积公式求得答案.【小问1详解】由正弦定理及,得,∵∴,∵,∴【小问2详解】由余弦定理,∴,即,当且仅当时取等号,∴,当且仅当时等号成立,∴的面积的最大值为19、(1)(2)【解析】(1)当时,由,可得,两式相减化简可求得通项,(2)由(1)得,然后利用裂项相消法可求得结果【小问1详解】因为,所以时,,两式作差得,,所以时,,又时,,得,符合上式,所以的通项公式为【小问2详解】由(1)知,所以即数列的前n项和20、(1);(2).【解析】(1)根据题意计算得到,得到椭圆方程.(2)设直线的方程为,联立方程,根据韦达定理得到,,表示出,解得答案.【详解】(1)依题意有解得所以椭圆的标准方程是.(2)由题意直线的斜率不能为,设直线的方程为,由方程组得,设,,所以,,所以,所以,令(),则,,因为在上单调递增,所以当,即时,面积取得最大值为.【点睛】本题考查了椭圆方程,椭圆内三角形面积的最值问题,意在考查学生的计算能力和综合应用能力.21、(1)(2)【解析】(1)由条件可得,解出即可;(2)设,,取AB的中点,联立直线与椭圆的方程消元,算出,,然后可算出,然后由可得,然后表示出的面积可得答案.小问1详解】令,得,所以,解得,,所以椭圆C的方程:【小问2详解】设,,取AB的中点,因为为以AB为斜边的等腰直角三角形,所以且,联立得,则∴又∵
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 现代交通枢纽的铁路货运效率优化
- 深度解读如何用云计算构建高效智能制造平台
- 国庆节巡航摩旅活动方案
- 小学趣味运动会活动方案策划
- 2024年春七年级地理下册 第九章 第二节 巴西说课稿 (新版)新人教版
- 23 梅兰芳蓄须说课稿-2024-2025学年四年级上册语文统编版001
- 8 千年梦圆在今朝(说课稿)2023-2024学年部编版语文四年级下册
- 5 协商决定班级事务 说课稿-2024-2025学年道德与法治五年级上册统编版
- 2023八年级英语上册 Module 9 Population Unit 3 Language in use说课稿(新版)外研版
- 《10天然材料和人造材料》说课稿-2023-2024学年科学三年级下册青岛版
- 四年级上册简便计算专项练习(已排版可直接下载打印)
- 煤场用车辆倒运煤的方案
- 《预防犯罪》课件
- 【企业作业成本在上海汽车集团中的应用研究案例7300字(论文)】
- 《民航服务沟通技巧》教案第6课巧妙化解冲突
- 化学用语专项训练
- 《了凡四训》课件
- 医院住院病人健康教育表
- 风险矩阵法(详细)
- 实验室供应商评价的5个基本步骤
- 电力公司工程勘察设计管理办法
评论
0/150
提交评论