版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省湘潭市2022-2023学年高三3月调研考试数学试题试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数.若存在实数,且,使得,则实数a的取值范围为()A. B. C. D.2.将函数图象向右平移个单位长度后,得到函数的图象关于直线对称,则函数在上的值域是()A. B. C. D.3.已知a,b∈R,,则()A.b=3a B.b=6a C.b=9a D.b=12a4.某高中高三(1)班为了冲刺高考,营造良好的学习氛围,向班内同学征集书法作品贴在班内墙壁上,小王,小董,小李各写了一幅书法作品,分别是:“入班即静”,“天道酬勤”,“细节决定成败”,为了弄清“天道酬勤”这一作品是谁写的,班主任对三人进行了问话,得到回复如下:小王说:“入班即静”是我写的;小董说:“天道酬勤”不是小王写的,就是我写的;小李说:“细节决定成败”不是我写的.若三人的说法有且仅有一人是正确的,则“入班即静”的书写者是()A.小王或小李 B.小王 C.小董 D.小李5.若的展开式中的系数之和为,则实数的值为()A. B. C. D.16.某中学2019年的高考考生人数是2016年高考考生人数的1.2倍,为了更好地对比该校考生的升学情况,统计了该校2016年和2019年的高考情况,得到如图柱状图:则下列结论正确的是().A.与2016年相比,2019年不上线的人数有所增加B.与2016年相比,2019年一本达线人数减少C.与2016年相比,2019年二本达线人数增加了0.3倍D.2016年与2019年艺体达线人数相同7.过抛物线的焦点作直线与抛物线在第一象限交于点A,与准线在第三象限交于点B,过点作准线的垂线,垂足为.若,则()A. B. C. D.8.在很多地铁的车厢里,顶部的扶手是一根漂亮的弯管,如下图所示.将弯管形状近似地看成是圆弧,已知弯管向外的最大突出(图中)有,跨接了6个坐位的宽度(),每个座位宽度为,估计弯管的长度,下面的结果中最接近真实值的是()A. B. C. D.9.已知函数(,)的一个零点是,函数图象的一条对称轴是直线,则当取得最小值时,函数的单调递增区间是()A.() B.()C.() D.()10.已知正方体的棱长为1,平面与此正方体相交.对于实数,如果正方体的八个顶点中恰好有个点到平面的距离等于,那么下列结论中,一定正确的是A. B.C. D.11.已知m,n为异面直线,m⊥平面α,n⊥平面β,直线l满足l⊥m,l⊥n,则()A.α∥β且∥α B.α⊥β且⊥βC.α与β相交,且交线垂直于 D.α与β相交,且交线平行于12.设,命题“存在,使方程有实根”的否定是()A.任意,使方程无实根B.任意,使方程有实根C.存在,使方程无实根D.存在,使方程有实根二、填空题:本题共4小题,每小题5分,共20分。13.某校初三年级共有名女生,为了了解初三女生分钟“仰卧起坐”项目训练情况,统计了所有女生分钟“仰卧起坐”测试数据(单位:个),并绘制了如下频率分布直方图,则分钟至少能做到个仰卧起坐的初三女生有_____________个.14.若函数为自然对数的底数)在和两处取得极值,且,则实数的取值范围是______.15.若满足,则目标函数的最大值为______.16.设满足约束条件,则的取值范围为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)一酒企为扩大生产规模,决定新建一个底面为长方形的室内发酵馆,发酵馆内有一个无盖长方体发酵池,其底面为长方形(如图所示),其中.结合现有的生产规模,设定修建的发酵池容积为450米,深2米.若池底和池壁每平方米的造价分别为200元和150元,发酵池造价总费用不超过65400元(1)求发酵池边长的范围;(2)在建发酵馆时,发酵池的四周要分别留出两条宽为4米和米的走道(为常数).问:发酵池的边长如何设计,可使得发酵馆占地面积最小.18.(12分)已知数列中,a1=1,其前n项和为,且满足.(1)求数列的通项公式;(2)记,若数列为递增数列,求λ的取值范围.19.(12分)在四棱椎中,四边形为菱形,,,,,,分别为,中点..(1)求证:;(2)求平面与平面所成锐二面角的余弦值.20.(12分)如图是圆的直径,垂直于圆所在的平面,为圆周上不同于的任意一点(1)求证:平面平面;(2)设为的中点,为上的动点(不与重合)求二面角的正切值的最小值21.(12分)分别为的内角的对边.已知.(1)若,求;(2)已知,当的面积取得最大值时,求的周长.22.(10分)如图为某大江的一段支流,岸线与近似满足∥,宽度为.圆为江中的一个半径为的小岛,小镇位于岸线上,且满足岸线,.现计划建造一条自小镇经小岛至对岸的水上通道(图中粗线部分折线段,在右侧),为保护小岛,段设计成与圆相切.设.(1)试将通道的长表示成的函数,并指出定义域;(2)若建造通道的费用是每公里100万元,则建造此通道最少需要多少万元?
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
首先对函数求导,利用导数的符号分析函数的单调性和函数的极值,根据题意,列出参数所满足的不等关系,求得结果.【详解】,令,得,.其单调性及极值情况如下:x0+0_0+极大值极小值若存在,使得,则(如图1)或(如图2).(图1)(图2)于是可得,故选:D.【点睛】该题考查的是有关根据函数值的关系求参数的取值范围的问题,涉及到的知识点有利用导数研究函数的单调性与极值,画出图象数形结合,属于较难题目.2、D【解析】
由题意利用函数的图象变换规律,三角函数的图象的对称性,余弦函数的值域,求得结果.【详解】解:把函数图象向右平移个单位长度后,可得的图象;再根据得到函数的图象关于直线对称,,,,函数.在上,,,故,即的值域是,故选:D.【点睛】本题主要考查函数的图象变换规律,三角函数的图象的对称性,余弦函数的值域,属于中档题.3、C【解析】
两复数相等,实部与虚部对应相等.【详解】由,得,即a,b=1.∴b=9a.故选:C.【点睛】本题考查复数的概念,属于基础题.4、D【解析】
根据题意,分别假设一个正确,推理出与假设不矛盾,即可得出结论.【详解】解:由题意知,若只有小王的说法正确,则小王对应“入班即静”,而否定小董说法后得出:小王对应“天道酬勤”,则矛盾;若只有小董的说法正确,则小董对应“天道酬勤”,否定小李的说法后得出:小李对应“细节决定成败”,所以剩下小王对应“入班即静”,但与小王的错误的说法矛盾;若小李的说法正确,则“细节决定成败”不是小李的,则否定小董的说法得出:小王对应“天道酬勤”,所以得出“细节决定成败”是小董的,剩下“入班即静”是小李的,符合题意.所以“入班即静”的书写者是:小李.故选:D.【点睛】本题考查推理证明的实际应用.5、B【解析】
由,进而分别求出展开式中的系数及展开式中的系数,令二者之和等于,可求出实数的值.【详解】由,则展开式中的系数为,展开式中的系数为,二者的系数之和为,得.故选:B.【点睛】本题考查二项式定理的应用,考查学生的计算求解能力,属于基础题.6、A【解析】
设2016年高考总人数为x,则2019年高考人数为,通过简单的计算逐一验证选项A、B、C、D.【详解】设2016年高考总人数为x,则2019年高考人数为,2016年高考不上线人数为,2019年不上线人数为,故A正确;2016年高考一本人数,2019年高考一本人数,故B错误;2019年二本达线人数,2016年二本达线人数,增加了倍,故C错误;2016年艺体达线人数,2019年艺体达线人数,故D错误.故选:A.【点睛】本题考查柱状图的应用,考查学生识图的能力,是一道较为简单的统计类的题目.7、C【解析】
需结合抛物线第一定义和图形,得为等腰三角形,设准线与轴的交点为,过点作,再由三角函数定义和几何关系分别表示转化出,,结合比值与正切二倍角公式化简即可【详解】如图,设准线与轴的交点为,过点作.由抛物线定义知,所以,,,,所以.故选:C【点睛】本题考查抛物线的几何性质,三角函数的性质,数形结合思想,转化与化归思想,属于中档题8、B【解析】
为弯管,为6个座位的宽度,利用勾股定理求出弧所在圆的半径为,从而可得弧所对的圆心角,再利用弧长公式即可求解.【详解】如图所示,为弯管,为6个座位的宽度,则设弧所在圆的半径为,则解得可以近似地认为,即于是,长所以是最接近的,其中选项A的长度比还小,不可能,因此只能选B,260或者由,所以弧长.故选:B【点睛】本题考查了弧长公式,需熟记公式,考查了学生的分析问题的能力,属于基础题.9、B【解析】
根据函数的一个零点是,得出,再根据是对称轴,得出,求出的最小值与对应的,写出即可求出其单调增区间.【详解】依题意得,,即,解得或(其中,).①又,即(其中).②由①②得或,即或(其中,,),因此的最小值为.因为,所以().又,所以,所以,令(),则().因此,当取得最小值时,的单调递增区间是().故选:B【点睛】此题考查三角函数的对称轴和对称点,在对称轴处取得最值,对称点处函数值为零,属于较易题目.10、B【解析】
此题画出正方体模型即可快速判断m的取值.【详解】如图(1)恰好有3个点到平面的距离为;如图(2)恰好有4个点到平面的距离为;如图(3)恰好有6个点到平面的距离为.所以本题答案为B.【点睛】本题以空间几何体为载体考查点,面的位置关系,考查空间想象能力,考查了学生灵活应用知识分析解决问题的能力和知识方法的迁移能力,属于难题.11、D【解析】
试题分析:由平面,直线满足,且,所以,又平面,,所以,由直线为异面直线,且平面平面,则与相交,否则,若则推出,与异面矛盾,所以相交,且交线平行于,故选D.考点:平面与平面的位置关系,平面的基本性质及其推论.12、A【解析】
只需将“存在”改成“任意”,有实根改成无实根即可.【详解】由特称命题的否定是全称命题,知“存在,使方程有实根”的否定是“任意,使方程无实根”.故选:A【点睛】本题考查含有一个量词的命题的否定,此类问题要注意在两个方面作出变化:1.量词,2.结论,是一道基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据数据先求出,再求出分钟至少能做到个仰卧起坐的初三女生人数即可.【详解】解:,.则分钟至少能做到个仰卧起坐的初三女生人数为.故答案为:.【点睛】本题主要考查频率分布直方图,属于基础题.14、【解析】
先将函数在和两处取得极值,转化为方程有两不等实根,且,再令,将问题转化为直线与曲线有两交点,且横坐标满足,用导数方法研究单调性,作出简图,求出时,的值,进而可得出结果.【详解】因为,所以,又函数在和两处取得极值,所以是方程的两不等实根,且,即有两不等实根,且,令,则直线与曲线有两交点,且交点横坐标满足,又,由得,所以,当时,,即函数在上单调递增;当,时,,即函数在和上单调递减;当时,由得,此时,因此,由得.故答案为【点睛】本题主要考查导数的应用,已知函数极值点间的关系求参数的问题,通常需要将函数极值点,转化为导函数对应方程的根,再转化为直线与曲线交点的问题来处理,属于常考题型.15、-1【解析】
由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】由约束条件作出可行域如图,化目标函数为,由图可得,当直线过点时,直线在轴上的截距最大,由得即,则有最大值,故答案为.【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.16、【解析】
由题意画出可行域,转化目标函数为,数形结合即可得到的最值,即可得解.【详解】由题意画出可行域,如图:转化目标函数为,通过平移直线,数形结合可知:当直线过点A时,直线截距最大,z最小;当直线过点C时,直线截距最小,z最大.由可得,由可得,当直线过点时,;当直线过点时,,所以.故答案为:.【点睛】本题考查了简单的线性规划,考查了数形结合思想,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)当时,,米时,发酵馆的占地面积最小;当时,时,发酵馆的占地面积最小;当时,米时,发酵馆的占地面积最小.【解析】
(1)设米,总费用为,解即可得解;(2)结合(1)可得占地面积结合导函数分类讨论即可求得最值.【详解】(1)由题意知:矩形面积米,设米,则米,由题意知:,得,设总费用为,则,解得:,又,故,所以发酵池边长的范围是不小于15米,且不超过25米;(2)设发酵馆的占地面积为由(1)知:,①时,,在上递增,则,即米时,发酵馆的占地面积最小;②时,,在上递减,则,即米时,发酵馆的占地面积最小;③时,时,,递减;时,递增,因此,即时,发酵馆的占地面积最小;综上所述:当时,,米时,发酵馆的占地面积最小;当时,时,发酵馆的占地面积最小;当时,米时,发酵馆的占地面积最小.【点睛】此题考查函数模型的应用,关键在于根据题意恰当地建立模型,利用函数性质讨论最值取得的情况.18、(1)(2)【解析】
(1)项和转换可得,继而得到,可得解;(2)代入可得,由数列为递增数列可得,,令,可证明为递增数列,即,即得解【详解】(1)∵,∴,∴,即,∴,∴,∴.(2).=2·-λ(2n+1).∵数列为递增数列,∴,即.令,即.∴为递增数列,∴,即的取值范围为.【点睛】本题考查了数列综合问题,考查了项和转换,数列的单调性,最值等知识点,考查了学生综合分析,转化划归,数学运算的能力,属于较难题.19、(1)证明见解析;(2).【解析】
(1)证明,得到平面,得到证明.(2)以点为坐标原点,建立如图所示的空间直角坐标系,平面的一个法向量为,平面的一个法向量为,计算夹角得到答案.【详解】(1)因为四边形是菱形,且,所以是等边三角形,又因为是的中点,所以,又因为,,所以,又,,,所以,又,,所以平面,所以,又因为是菱形,,所以,又,所以平面,所以.(2)由题意结合菱形的性质易知,,,以点为坐标原点,建立如图所示的空间直角坐标系,则,,,,,设平面的一个法向量为,则:,据此可得平面的一个法向量为,设平面的一个法向量为,则:,据此可得平面的一个法向量为,,平面与平面所成锐二面角的余弦值.【点睛】本题考查了线线垂直,二面角,意在考查学生的计算能力和空间想象能力.20、(1)见解析(2)【解析】
(1)推导出,,从而平面,由面面垂直的判定定理即可得证.(2)过作,以为坐标原点,建立如图所示空间坐标系,设,利用空间向量法表示出二面角的余弦值,当余弦值取得最大时,正切值求得最小值;【详解】(1)因为,面,,平面,平面,平面,又平面,平面平面;(2)过作
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 丑小鸭读后感(15篇)
- 现代物流产业与物流
- 读书月活动演讲稿4篇
- canon打印机维修技术手册
- 化工课程设计心得体会
- 课时5:大数的改写(教学实录)-2024-2025学年五年级上册数学苏教版
- 平面设计师实习报告(5篇)
- 幼儿园教师心得模板10篇
- 房产销售工作总结合集15篇
- 陕西省石泉县高中生物 第五章 生物的进化 5.1 生物进化理论教学实录 苏教版必修2
- 地方公务员考试:2022西藏真题及答案
- 电化学培优专题
- DB32/ 4437-2022 施工场地扬尘排放标准
- 化验室质检培训课件
- 世界的聚落教案6
- 大件运输管理制度范本(3篇)
- 《城市规划原理》复习考试题库(含答案)
- 国开电大《文学英语赏析》网上形考任务试题及答案(Word)
- 管理学原理(南大马工程)
- DB22-T 5129-2022超低能耗居住建筑节能设计标准
- 福建省龙岩市各县区乡镇行政村村庄村名明细及行政区划代码
评论
0/150
提交评论