版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
11第二十三章旋转
一、选择题(共10小题,每小题3分,共30分.每小题有四个选项,其中只有一个选项符合题意)1.(2022·浙江湖州期中)如图是神舟十三号载人飞行任务标识,该标识经过旋转能得到的是()ABCD2.(2022·河南三门峡期中)已知点P1(a,-2)与点P2(3,b)关于原点对称,则(a+b)2023=()A.-1 B.1 C.-52023 D.520233.在如图所示的方格纸中,将标有序号的小正方形中的一个涂上阴影,使它与图中阴影部分组成的新图形是中心对称图形,该小正方形的序号是()A.① B.② C.③ D.④(第3题)(第4题)4.(2021·浙江湖州吴兴区期末)如图,在正方形网格中,线段A'B'是线段AB绕某点顺时针旋转一定角度后所得,点A'与点A是对应点,则这个旋转角可能是()A.45° B.60° C.90° D.135°5.(2021·山东济南市中区段考)如图,将△ABC绕点A逆时针旋转90°得到△ADE,若点D恰好在线段BC的延长线上,则下列结论中错误的是()A.∠BAD=∠CAE B.∠CDE=90°C.∠ABC=45° D.∠ACB=120°(第5题)(第6题)6.(2021·山西运城盐湖区期末)如图,已知▱ABCD中,AE⊥BC,以点B为中心,取旋转角等于∠ABC,将△BAE顺时针旋转,得到△BA'E',连接DA'.若∠ADC=60°,∠ADA'=50°,则∠DA'E'的度数为()A.130° B.150° C.160° D.170°7.(2021·江西南昌期中)如图,将△ABC绕点C(0,-1)旋转180°得到△A'B'C,设点A的坐标为(a,b),则点A'的坐标为()A.(-a,-b-2) B.(-a,-b-1)C.(-a,-b+1) D.(-a,-b)(第7题)(第8题)8.(2021·海南模拟)如图,将边长为1的正方形ABCD绕点C按逆时针方向旋转一定角度后,得到正方形FGCE,使得点B落在对角线CF上,则阴影部分的面积是()A.14 B.2-C.2-1 D.19.(2022·浙江杭州西湖区期中)上数学拓展课的时候,小明转动三角板发现了一个很奇妙的结论:如图(1),将含有45°角的三角板ABC绕点A顺时针旋转,当∠BAD<90°时,延长线段ED和线段CB使之相交于点F,如图(2),则CF-DF的值始终不变.若AB=5,则CF-DF的值为()A.102 B.10 C.15 D.1510.(2022·甘肃白银期末改编)如图,在正方形ABCD中,顶点A,B,C,D在坐标轴上,且B(2,0),以AB为边构造菱形ABEF,将菱形ABEF与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第2022次旋转结束时,点F2022的坐标为()A.(-2,22) B.(-2,-22)C.(22,-2) D.(-22,-2)二、填空题(共5小题,每小题3分,共15分)11.新风向开放性试题请任写一个成中心对称图形的汉字、字母或数字:.
12.新风向新定义试题(2022·四川南充期中改编)若f(m,n)=(m,-n),g(m,n)=(-m,-n),则g[f(-2,3)]=.
13.在如图所示的平面直角坐标系中,△ABC绕原点O顺时针旋转90°后得到△A'B'C',则点A的对应点A'的坐标是.
(第13题)(第14题)14.(2021·江西南昌红谷滩区模拟)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A'B'C是由△ABC绕点C顺时针旋转得到的,其中点A'与点A是对应点,点B'与点B是对应点,连接AB',且A,B',A'三点在同一条直线上,则AA'的长为.
15.(2022·河南焦作段考)如图,在△AOB和△COD中,∠AOB=∠COD=90°,∠B=38°,∠C=72°,点D在OA上.将△COD绕点O顺时针旋转一周,每秒旋转10°,在旋转过程中,当时间为时,CD∥AB.
三、解答题(共6小题,共55分)16.(6分)(2021·浙江宁波模拟)图(1)、图(2)、图(3)均是由边长为1的正三角形构成的网格,每个网格图中有5个正三角形已涂黑.请在余下的正三角形中按下列要求作图.(1)在图(1)中选择1个正三角形涂黑,使得阴影部分图形是中心对称图形,但不是轴对称图形;(2)在图(2)中选择2个正三角形涂黑,使得阴影部分图形是轴对称图形,但不是中心对称图形;(3)在图(3)中选择3个正三角形涂黑,使得阴影部分图形既是中心对称图形,又是轴对称图形.17.(8分)(2022·甘肃庆阳期中改编)在下列网格图中,每个小正方形的边长均为1,在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试在图中作出△ABC以点A为旋转中心,按顺时针方向旋转90°后得到的图形△AB1C1;(2)若点B的坐标为(-3,5),试在图中画出直角坐标系,并写出A,C两点的坐标;(3)根据(2)中的直角坐标系作出与△ABC关于原点对称的图形△A2B2C2,并写出B2,C2两点的坐标.18.(9分)如图(1),一个内角等于60°的菱形ABCD,将∠MAN的顶点与该菱形的顶点A重合,且∠MAN=60°.以点A为旋转中心,按顺时针方向旋转∠MAN,使它的两边分别交CB,DC于点E,F.(1)当BE=DF时,AE与AF的数量关系是;
(2)如图(2),当BE≠DF时,(1)中的结论是否成立?若成立,请加以证明;若不成立,请说明理由.19.(9分)(2022·重庆江津区联考)如图,将△ABC绕点C逆时针旋转90°得到△DEC,其中点A,B的对应点分别是点D,E,点B落在DE边上,延长AC交DE于点F,AB,DC交于点G.(1)判断AB与DE的位置关系,并说明理由.(2)求证:FB+BG=2BC.20.(11分)(2022·吉林长春期中)阅读与理解:图(1)是边长分别为a和b(a>b)的两个等边三角形纸片叠放在一起的图形(C和C'重合).操作与证明:(1)操作:固定△ABC,将△C'DE绕点C按顺时针方向旋转30°,连接AD,BE,如图(2),线段BE与AD之间具有怎样的大小关系?证明你的结论;图(1)图(2)图(3)(2)操作:若将图(1)中△C'DE,绕点C按顺时针方向任意旋转一个角度α,连接AD,BE,如图(3),线段BE与AD之间具有怎样的大小关系?证明你的结论.猜想与发现:(3)若将图(1)中的△C'DE,绕点C'按逆时针方向旋转α(0°<α<360°),当α等于多少时,△BCD的面积最大?请直接写出结果.21.(12分)新风向探究性试题(2022·河南洛阳外国语学校期中)如图(1),已知∠DAC=90°,△ABC是等边三角形,点P为射线AD上任意一点(点P不与点A重合),连接CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连接QB并延长交直线AD于点E.(1)如图(1),猜想∠QEP=°;
(2)如图(2)和图(3),若当∠DAC为锐角或钝角时,其他条件不变,猜想∠QEP的度数,并选取一种情况加以证明;(3)如图(3),若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的长.图(1)图(2)图(3)第二十三章旋转答案1.B2.A∵点P1(a,-2)与点P2(3,b)关于原点对称,∴a=-3,b=2,∴(a+b)2023=(-3+2)2023=-1.3.B4.C连接AA',BB',作线段AA',BB'的垂直平分线交于点O,点O即为旋转中心.连接OA,OA',即∠AOA'为旋转角,∴旋转角可能为90°.故选C.5.D∵将△ABC绕点A逆时针旋转90°得到△ADE,∴AB=AD,∠ABC=∠ADE,∠BAD=∠CAE=90°,∴∠ABC=∠ADC=∠ADE=45°,∴∠CDE=90°,∴选项A,B,C正确.而∠ACB=120°推不出来,故选D.6.C∵四边形ABCD为平行四边形,∴∠ABC=∠ADC=60°,AD∥BC,∴∠ADA'+∠DA'B=180°.∵∠ADA'=50°,∴∠DA'B=130°.∵AE⊥BE,∴∠BAE=30°.由旋转可知∠BA'E'=∠BAE=30°,∴∠DA'E'=130°+30°=160°.7.A根据题意,点A,A'关于点C对称,设点A'的坐标是(x,y),则a+x2=0,b+y2=-1,解得x=-a,y=-b-2,∴点A'的坐标是(8.C设AB与EF交于点H.由题意知EF=CE=1,CF=12+12=2,∴BF=2-1.∵∠BFE=45°,∴BH=BF=2-1,S阴影部分=S△EFC-S△HBF=12×1×1-12×(2-1)9.B如图,连接AF.由题意得∠ABF=∠AEF=90°,AB=AE.在Rt△ABF和Rt△AEF中,AF=AF,AB=AE,∴Rt△ABF≌Rt△AEF(HL),∴BF=EF,∴CF-DF=BC+BF-DF=BC+EF-DF=BC+DE=2BC.∵△ABC是等腰直角三角形10.D由题意可得OB=OA=2,∴AB=22.∵四边形ABEF是菱形,∴AF=AB=22,∴F(22,2).由题意可得,F1(2,-22),F2(-22,-2),F3(-2,22),F4(22,2)……每旋转4次为一个循环.∵2022÷4=505……2,∴点F2022的坐标为(-22,-2).11.0(或田,N等,答案不唯一)12.(2,3)由题意得f(-2,3)=(-2,-3),∴g[f(-2,3)]=g(-2,-3)=(2,3).13.(4,1)图解:如图,点A'的坐标是(4,1).
14.6∵△A'B'C是由△ABC绕点C顺时针旋转得到的,∴CA'=CA,CB'=CB=2,∠A'CB'=∠ACB=90°,∠A'B'C=∠B=60°,∠A'=∠BAC=30°.∵A,B',A'三点在同一条直线上,CA'=CA,∴∠A'AC=∠A'=30°.又∠A'B'C=∠B'AC+∠B'CA=60°,∴∠B'CA=∠B'AC=30°,∴AB'=B'C=2.在Rt△A'B'C中,由∠A'=30°,得A'B'=2B'C=4,∴AA'=AB'+B'A'=2+4=6.15.11秒或29秒(分类讨论思想)∵∠C=72°,∠COD=90°,∴∠CDO=18°.①如图(1),CD和AB在点O同侧时,设CD与OB相交于点E.∵AB∥CD,∴∠CEO=∠B=38°,∴∠DOE=∠CEO-∠CDO=38°-18°=20°,∴旋转角∠AOD=∠AOB+∠DOE=90°+20°=110°.∵每秒旋转10°,∴此时旋转时间为11秒.②如图(2),CD和AB在点O异侧时,延长BO与CD相交于点E.∵AB∥CD,∴∠CEO=∠B=38°,∴∠DOE=∠CEO-∠CDO=38°-18°=20°,∴旋转角为270°+20°=290°.∵每秒旋转10°,∴旋转时间为29秒.综上所述,当时间为11秒或29秒时,CD∥AB.16.【参考答案】(1)如图(1).(2分)(2)如图(2),答案不唯一.(4分)(3)如图(3).(6分)17.【参考答案】(1)△AB1C1如图所示.(2分)(2)直角坐标系如图所示,点A的坐标为(0,1),点C的坐标为(-3,1).(5分)(3)△A2B2C2如图所示,点B2的坐标为(3,-5),点C2的坐标为(3,-1).(8分)18.【思路导图】(1)菱形ABCD的性质△ABE≌△ADF→AE=AF(2)连接AC△ABC,△ACD为等边三角形△BAE≌△CAF→AE=AF【参考答案】(1)AE=AF(4分)解法提示:∵四边形ABCD是菱形,∴AB=AD,∠B=∠D.在△ABE和△ADF中,AB∴△ABE≌△ADF(SAS),∴AE=AF.(2)成立.(5分)证明:如图,连接AC,∵四边形ABCD是菱形,∠B=60°,∴AB=BC=AD=CD,∠D=∠B=60°,∴△ABC和△ACD都是等边三角形,∴AB=AC,∠ACD=∠B=∠BAC=60°.(7分)∵∠MAN=60°=∠BAC,∴∠BAE=∠CAF.在△BAE和△CAF中,∠∴△BAE≌△CAF(ASA),∴AE=AF.(9分)19.【参考答案】(1)AB⊥DE.(1分)理由:由旋转可得∠A=∠D,∠ACD=∠BCE=90°.∵∠DGB=∠CGA,∴∠DBG=∠ACG=90°,∴AB⊥DE.(4分)(2)由旋转可得∠ABC=∠E,∠ACB=∠DCE,BC=EC.∴∠BCG=∠ECF,∴△CBG≌△CEF,∴EF=BG,∴FB+BG=FB+EF=BE.∵EC=BC,∠BCE=90°,∴△BCE为等腰直角三角形,∴BE=2BC,即FB+BG=2BC.(9分)20.【参考答案】(1)BE=AD.(1分)证明:∵△C'DE绕点C按顺时针方向旋转30°,∴∠BCE=∠ACD=30°.(2分)∵△ABC与△C'DE是等边三角形,∴CB=CA,CE=CD,(3分)∴△BCE≌△ACD,∴BE=AD.(5分)(2)BE=AD.(6分)证明:∵△C'DE绕点C按顺时针方向旋转的角度为α,∴∠BCE=∠ACD=α.(7分)∵△ABC与△C'DE是等边三角形,∴CB=CA,CE=CD,(8分)∴△BCE≌△ACD,∴BE=AD.(9分)(3)α=150°或330°.(11分)解法提示:如图,当D旋转到点D1或点D2位置时,△BCD的面积最大,此时旋转角是60°+90°
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 订货合同的履行要点
- 设备品质保证书案例
- 设备采购合同的交货方式
- 设计项目招标文件招标
- 诚信担保书状
- 财务审计与合规性评估
- 购销合同回款期法律规定
- 购销合同的仲裁与诉讼
- 购销资产合同书范本
- 赠送运营服务合同模板
- 政治生日愿望三篇
- 华友钴业行业个股分析
- 期末试卷(试题)-2023-2024学年一年级数学下册人教版
- 护士家长进课堂
- 保洁玻璃清洁培训课件
- 住房保障社工述职报告
- 知识产权维权授权书
- 第23课《孟子》三章《得道多助失道寡助》公开课一等奖创新教学设计统编版语文八年级上册
- 餐厅预防食品异物课件
- 郑州大学801经济学基础(政治经济学、西方经济学)历年考研真题汇编
- 2022年新高考重庆政治试卷真题(解析版)
评论
0/150
提交评论