第九章 代谢调节_第1页
第九章 代谢调节_第2页
第九章 代谢调节_第3页
第九章 代谢调节_第4页
第九章 代谢调节_第5页
已阅读5页,还剩67页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第九章物质代谢的联系与调节MetabolicInterrelationshipsandRegulation——生命

体内生化反应的总和物质代谢的特点TheSpecialtyofMetabolism第一节一、整体性

糖类

脂类蛋白质水

无机盐维生素各种物质代谢之间互有联系,相互依存。

消化吸收中间代谢废物排泄二、代谢调节机体有精细的调节机制,调节代谢的强度、方向和速度内外环境不断变化影响机体代谢适应环境的变化三、各组织、器官物质代谢各具特色结构不同酶系的种类、含量不同不同的组织、器官代谢途径不同、功能各异四、各种代谢物均具有各自共同的代谢池例如各种组织

消化吸收的糖

肝糖原分解糖异生血糖五、ATP是机体能量利用的共同形式营养物分解释放能量ADP+PiATP直接供能六、NADPH是合成代谢所需的还原当量例如乙酰CoANADPH+H+脂酸、胆固醇磷酸戊糖途径物质代谢的相互联系MetabolicInterrelationships第二节一、物质代谢的相互联系糖、脂、蛋白质均可氧化供能乙酰CoA是三大营养物质共同的中间代谢产物

三羧酸循环是糖、脂、蛋白质彻底分解的共同代谢途径一、在能量代谢上的相互联系三大营养素共同中间产物共同最终代谢通路糖脂肪蛋白质乙酰CoATAC2H氧化磷酸化ATPCO2三大营养素可在体内氧化供能。从能量供应的角度看,三大营养素可以互相代替,并互相制约。一般情况下,供能以糖、脂为主,并尽量节约蛋白质的消耗。脂肪分解增强ATP增多ATP/ADP比值增高任一供能物质的代谢占优势,常能抑制和节约其他物质的降解。糖分解被抑制

6-磷酸果糖激酶-1被抑制(糖分解代谢限速酶之一)例如饥饿时肝糖原分解

,肌糖原分解

肝糖异生

,蛋白质分解

以脂酸、酮体分解供能为主蛋白质分解明显降低1~2天3~4天(一)糖代谢与脂代谢的相互联系1.摄入的糖量超过能量消耗时

二、糖、脂和蛋白质之间的相互联系葡萄糖乙酰CoA合成脂肪(脂肪组织)合成糖原储存(肝、肌肉)2.脂肪的甘油部分能在体内转变为糖脂酸乙酰CoA葡萄糖脂肪甘油甘油激酶肝、肾、肠磷酸-甘油葡萄糖3.脂肪的分解代谢受糖代谢的影响饥饿、糖供应不足或糖代谢障碍时高酮血症草酰乙酸相对不足糖不足脂肪大量动员酮体生成增加氧化受阻(二)糖与氨基酸代谢的相互联系例如丙氨酸丙酮酸脱氨基糖异生葡萄糖1.大部分氨基酸脱氨基后,生成相应的α-酮酸,可转变为糖。2.糖代谢的中间产物可氨基化生成某些非必需氨基酸糖丙酮酸草酰乙酸乙酰CoA柠檬酸α-酮戊二酸丙氨酸天冬氨酸谷氨酸氨基酸乙酰CoA脂肪

1.蛋白质可以转变为脂肪

2.氨基酸可作为合成磷脂的原料丝氨酸磷脂酰丝氨酸胆胺脑磷脂胆碱卵磷脂(三)脂类与氨基酸代谢的相互联系——但不能说,脂类可转变为氨基酸。脂肪甘油磷酸甘油醛糖酵解途径丙酮酸其他α-酮酸某些非必需氨基酸3.脂肪的甘油部分可转变为非必需氨基酸(四)核酸与糖、蛋白质代谢的相互联系

1.氨基酸是体内合成核酸的重要原料甘氨酸天冬氨酸谷氨酰胺一碳单位合成嘌呤合成嘧啶2.磷酸核糖由磷酸戊糖途径提供葡萄糖、糖原丙酮酸乙酰CoA脂肪Leu、Lys草酰乙酸α-酮戊二酸琥珀酸延胡索酸TyrProVal,Ile,Met,ThrAspGluArgHisPro胆固醇、酮体AlaTrpSerGlyThrCys甘油脂酸1.糖的有氧氧化2.脂肪酸氧化分解3.酮体氧化分解4.氨基酸分解代谢1.进入三羧酸循环2.合成脂肪酸3.合成酮体4.合成胆固醇乙酰CoA来源去路组织、器官的代谢特点及联系MetabolicSpecialtyandInterrelationshipsofTissuesandApparatus第三节是机体物质代谢的枢纽。在糖、脂、蛋白质、水、盐及维生素代谢中均具有独特而重要的作用。肝合成、储存糖原分解糖原生成葡萄糖,释放入血是糖异生的主要器官肝在糖代谢中的作用如——肝在维持血糖稳定中起重要作用。酮体乳酸游离脂酸葡萄糖以葡萄糖有氧氧化供能为主。心脏耗能大,耗氧多。葡萄糖为主要能源。不能利用脂酸,葡萄糖供应不足时,利用酮体。

脑合成、储存糖原;通常以脂酸氧化为主要供能方式;剧烈运动时,以糖酵解为主。肌肉能量主要来自糖酵解。红细胞合成及储存脂肪的重要组织;将脂肪分解成脂酸、甘油,供机体其他组织利用。

脂肪组织也可进行糖异生和生成酮体;肾髓质主要由糖酵解供能;肾皮质主要由脂酸、酮体有氧氧化供能。肾脏代谢调节TheRegulationofMetabolism第四节高等生物——三级水平代谢调节细胞水平的调节(单细胞生物)激素水平的调节(内分泌腺)整体水平的调节(神经系统)含义

机体对代谢途径反应速度的调节控制能力,即在某些条件影响下,细胞能够启动或加速某一代谢过程,而在另一条件下则又能使之终止或减慢。分为三级水平代谢调节是生物在长期进化过程中逐步形成的一种适应能力。普遍存在与生物界,是生命的重要特征细胞水平代谢调节激素水平代谢调节高等生物在进化过程中,出现了专司调节功能的内分泌细胞及内分泌器官,其分泌的激素可对其他细胞发挥代谢调节作用。整体水平代谢调节在中枢神经系统的控制下,或通过神经纤维及神经递质对靶细胞直接发生影响,或通过某些激素的分泌来调节某些细胞的代谢及功能,并通过各种激素的互相协调而对机体代谢进行综合调节。主要通过细胞内代谢物浓度的变化,对酶的活性及含量进行调节,这种调节称为原始调节或细胞水平代谢调节.

一、细胞水平的代谢调节•细胞水平的代谢调节主要是酶水平的调节。•细胞内酶呈隔离分布。•代谢途径的速度、方向由其中的关键酶(keyenzyme)的活性决定。•代谢调节主要是通过对关键酶活性的调节而实现的。(一)细胞内酶的隔离分布催化某一代谢途径的酶类常常组成多酶体系,定位分布于细胞的某一亚细胞结构中多酶体系在细胞内的分布

酶的隔离分布的意义

——避免了各种代谢途径互相干扰。关键酶:在多酶体系催化的一系列代谢途径中,各种酶的活性往往不同,其中活性最低的酶催化的那一步反应速度最慢,限制着整条代谢途径的总速度,把反应速度最慢的一步反应称为限速反应,催化该步反应的酶称为关键酶(keyenzyme),又称为限速酶(limitingvelocityenzyme)。

①速度最慢,它的速度决定整个代谢途径的总速度,故又称其为限速酶(limitingvelocityenzymes)。②催化单向反应不可逆或非平衡反应,它的活性决定整个代谢途径的方向。③这类酶活性除受底物控制外,还受多种代谢物或效应剂的调节。关键酶催化的反应具有以下特点:关键酶往往处于代谢途径的起始点或分支处。机体内各种调节因素常常是通过改变细胞内特定关键酶的活性或者含量来调节整个代谢途径的。代谢途径

定位

关键酶糖原合成胞液糖原合成酶糖原分解胞液糖原磷酸化酶糖酵解胞液己糖激酶、磷酸果糖激酶、丙酮酸激酶糖的有氧氧化胞液、线粒体丙酮酸脱氢酶系三羧酸循环线粒体柠檬酸合成酶、异柠檬酸脱氢酶、α-酮戊二酸脱氢酶系糖异生胞液、线粒体丙酮酸羧化酶、磷酸烯醇式丙酮酸羧激酶、果糖1,6二磷酸酶磷酸戊糖途径胞液6-磷酸葡萄糖脱氢酶脂肪酸合成胞液乙酰CoA羧化酶脂肪酸的(β-)氧化胞液、线粒体肉碱脂酰转移酶I胆固醇合成胞液、内质网HMG-CoA还原酶尿素合成胞液、线粒体精氨酸代琥珀酸合成酶主要代谢途径在细胞内的定位及其关键酶快速代谢

迟缓代谢数秒、数分钟通过改变酶的活性数小时、几天通过改变酶的含量变构调节(allostericregulation)化学修饰调节(chemicalmodification)•代谢调节主要是通过对关键酶活性的调节而实现的。1.变构调节的概念小分子化合物与酶分子活性中心以外的某一部位特异结合,引起酶蛋白分子构象变化,从而改变酶的活性,这种调节称为酶的变构调节或别构调节。(二)关键酶的变构调节被调节的酶称为变构酶或别构酶(allostericenzyme)使酶发生变构效应的物质,称为变构效应剂(allosteric

effector)

•变构激活剂

allostericeffector

——引起酶活性增加的变构效应剂。•变构抑制剂

allostericeffector

——引起酶活性降低的变构效应剂。2.变构调节的机制变构酶催化亚基调节亚基变

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论