中职教育数学《二次函数-复习》课件_第1页
中职教育数学《二次函数-复习》课件_第2页
中职教育数学《二次函数-复习》课件_第3页
中职教育数学《二次函数-复习》课件_第4页
中职教育数学《二次函数-复习》课件_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

二次函数复习课二次函数的定义:

形如y=ax2+bx+c(a,b,c是常数,a≠0)

的函数叫做二次函数注意:当二次函数表示某个实际问题时,还必须根据题意确定自变量的取值范围.二次函数的一般形式

函数y=ax2+bx+c其中a、b、c是常数切记:a≠0右边一个x的二次多项式(不能是分式或根式)二次函数的特殊形式:当b=0时,y=ax2+c当c=0时,y=ax2+bx当b=0,c=0时,y=ax2知识运用

下列函数中,哪些是二次函数?

(1)y=3x-1(2)y=3x2(3)y=3x3+2x2(4)y=2x2-2x+1(5)y=x

-2+x(6)y=x2-x(1+x)驶向胜利的彼岸当m取何值时,函数是y=(m+2)x分别是一次函数?反比例函数?知识运用m2-2二次函数?(一)形如y=ax2

(a≠0)的二次函数二次函数开口方向对称轴顶点坐标y=ax2

a>

0a<

0向上向下直线X=0(0,0)(二)形如y=ax2+k

(a≠0)的二次函数二次函数开口方向对称轴顶点坐标y=ax2+k

a0向上a0向下><直线X=0(0,K)二次函数开口方向对称轴顶点坐标y=a(x-h)2

a>

0a<

0向上向下直线X=h(h,0)(三)、形如y=a(x-h)2(a≠0)的二次函数巩固练习1:(1)抛物线y=x2的开口向

,对称轴是

,顶点坐标是

,图象过第

象限;(2)已知y=-nx2(n>0),则图象()(填“可能”或“不可能”)过点A(-2,3)。上Y轴(0,0)一、二不可能(3)抛物线y=x2+3的开口向

,对称轴是

,顶点坐标是

,是由抛物线y=x2向

平移

个单位得到的;上直线X=0(0,3)上3(2)已知(如图)抛物线y=ax2+k的图象,则a

0,k

0;若图象过A(0,-2)和B(2,0),则a=

,k=

;函数关系式是y=

。〉〈0.5-20.5x2-2XYABO(四)形如y=a(x-h)2+k(a≠0)的二次函数二次函数开口方向对称轴顶点坐标y=a(x-h)2+k向上向下a>

0

a<

0直线X=h(h,k)练习巩固2:(1)抛物线y=2(x–3)2+1的开口向

,对称轴

,顶点坐标是

(2)若抛物线y=a(x+m)2+n开口向下,顶点在第四象限,则a

0,m

0,n

0。上X=3(3,1)〈〈〈2、已知二次函数y=-x2+bx-5的图象的顶点在y轴上,则b=___。120-1-2-3-401234••••••••123456-1-2观察y=x2与y=x2-6x+7的函数图象,说说y=x2-6x+7的图象是怎样由y=x2的图象平移得到的?y=x2-6x+7=x2-6x+9-2=(x-3)2-2平移规律:h决定左右左正右负K决定上下上正下负基础练习1.由y=2x2的图象向左平移两个单位,再向下平移三个单位,得到的图象的函数解析式为

________________________2.由函数y=-3(x-1)2+2的图象向右平移4个单位,再向上平移3个单位,得到的图象的函数解析式为_____________________________y=2(x+2)2-3=2x2+8x+5y=-3(x-1-4)2+2+3=-3x2+30x-703.抛物线y=ax2向左平移一个单位,再向下平移8个单位且y=ax2过点(1,2).则平移后的解析式为______________;y=2(x+1)2-84.将抛物线y=x2-6x+4如何移动才能得到y=x2.逆向思考,由y=x2-6x+4=(x-3)2-5知:先向左平移3个单位,再向上平移5个单位.二次函数y=ax2+bx+c(a≠0)的图象和性质1.顶点坐标与对称轴2.位置与开口方向3.增减性与最值抛物线顶点坐标对称轴位置开口方向增减性最值y=ax2+bx+c(a>0)y=ax2+bx+c(a<0)由a,b和c的符号确定由a,b和c的符号确定向上向下在对称轴的左侧,y随着x的增大而减小.在对称轴的右侧,y随着x的增大而增大.

在对称轴的左侧,y随着x的增大而增大.在对称轴的右侧,y随着x的增大而减小.

根据图形填表:归纳知识点:抛物线y=ax2+bx+c的符号问题:(1)a的符号:由抛物线的开口方向确定开口向上a>0开口向下a<0(2)C的符号:由抛物线与y轴的交点位置确定.交点在y轴上方c>0交点在y轴下方c<0经过坐标原点c=0(3)b的符号:由对称轴的位置确定对称轴在y轴左侧a、b同号对称轴在y轴右侧a、b异号对称轴是y轴b=0(4)b2-4ac的符号:由抛物线与x轴的交点个数确定与x轴有两个交点b2-4ac>0与x轴有一个交点b2-4ac=0与x轴无交点b2-4ac<017.根据下列表格中二次函数y=ax2+bx+c的自变量与函数值的对应值,判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解的范围是()x6.176.186.196.20y=ax2+bx+c-0.03-0.010.020.04A.6.17<X<6.18B.6.18<X<6.19C.-0.01<X<0.02D.6.19<X<6.20Byx02-3(16)小明从右边的二次函数y=ax2+bx+c的图象观察得出下面的五条信息:①a<0;②c=0;③函数的最小值为-3;④当x<0时,y>0;⑤当0<x1<x2<2时,y1>y2

你认为其中正确的个数有()

A.2B.3C.4D.5C练一练:已知y=ax2+bx+c的图象如图所示,

a___0,b____0,c_____0,abc____0b___2a,2a-b_____0,2a+b_______0b2-4ac_____0a+b+c_____0,a-b+c____0

4a-2b+c_____00-11-2<<<<>>><>>>二次函数与一元二次方程二次函数y=ax2+bx+c的图象和x轴交点有三种情况:有两个交点,有一个交点,没有交点.当二次函数y=ax2+bx+c的图象和x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.二次函数y=ax2+bx+c的图象和x轴交点一元二次方程ax2+bx+c=0的根一元二次方程ax2+bx+c=0根的判别式(b2-4ac)有两个交点有两个相异的实数根b2-4ac>0有一个交点有两个相等的实数根b2-4ac=0没有交点没有实数根b2-4ac<0选择抛物线y=x2-4x+3的对称轴是_____________.A直线x=1B直线x=-1C直线x=2D直线x=-2(2)抛物线y=3x2-1的________________A开口向上,有最高点B开口向上,有最低点

C开口向下,有最高点D开口向下,有最低点(3)若y=ax2+bx+c(a

0)与轴交于点A(2,0),B(4,0),

则对称轴是_______A直线x=2B直线x=4C直线x=3D直线x=-3(4)若y=ax2+bx+c(a

0)与轴交于点A(2,m),B(4,m),

则对称轴是_______A直线x=3B直线x=4C直线x=-3D直线x=2cBCA2、已知抛物线顶点坐标(h,k),通常设抛物线解析式为_______________3、已知抛物线与x轴的两个交点(x1,0)、(x2,0),通常设解析式为_____________1、已知抛物线上的三点,通常设解析式为________________y=ax2+bx+c(a≠0)y=a(x-h)2+k(a≠0)y=a(x-x1)(x-x2)

(a≠0)求抛物线解析式的三种方法练习根据下列条件,求二次函数的解析式。(1)、图象经过(0,0),(1,-2),(2,3)三点;(2)、图象的顶点(2,3),且经过点(3,1);(3)、图象经过(-2,0),(3,0),且最高点的纵坐标是3。

例1、已知二次函数y=ax2+bx+c的最大值是2,图象顶点在直线y=x+1上,并且图象经过点(3,-6)。求a、b、c。解:∵二次函数的最大值是2∴抛物线的顶点纵坐标为2又∵抛物线的顶点在直线y=x+1上∴当y=2时,x=1∴顶点坐标为(1,2)∴设二次函数的解析式为y=a(x-1)2+2又∵图象经过点(3,-6)∴-6=a(3-1)2+2∴a=-2∴二次函数的解析式为y=-2(x-1)2+2即:y=-2x2+4x综合创新:1.已知抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同,顶点在直线x=1上,且顶点到x轴的距离为5,请写出满足此条件的抛物线的解析式.解:

抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同

a=1或-1

顶点在直线x=1上,且顶点到x轴的距离为5,

顶点为(1,5)或(1,-5)

所以其解析式为:(1)y=(x-1)2+5(2)y=(x-1)2-5(3)y=-(x-1)2+5(4)y=-(x-1)2-5

2.若a+b+c=0,a

0,把抛物线y=ax2+bx+c向下平移4个单位,再向左平移5个单位所到的新抛物线的顶点是(-2,0),求原抛物线的解析式.分析:(1)由a+b+c=0可知,原抛物线的图象经过(1,0)(2)新抛物线向右平移5个单位,

再向上平移4个单位即得原抛物线答案:y=-x2+6x-5练习1、已知抛物线y=ax2+bx-1的对称轴是x=1,最高点在直线y=2x+4上。

(1)求此抛物线的顶点坐标.(2)求抛物线解析式.(3)求抛物线与直线的交点坐标.解:∵二次函数的对称轴是x=1∴图象的顶点横坐标为1又∵图象的最高点在直线y=2x+4上∴当x=1时,y=6∴顶点坐标为(1,6)

例2、已知抛物线y=ax2+bx+c与x轴正、负半轴分别交于A、B两点,与y轴负半轴交于点C。若OA=4,OB=1,∠ACB=90°,求抛物线解析式。解:∵点A在正半轴,点B在负半轴OA=4,∴点A(4,0)OB=1,∴点B(-1,0)∵∠ACB=90°OC⊥AB∴∠CAO=∠BCO∠CAO+∠OCA=90,∠OCA+∠BCO=90∴∠BOC=∠COA,∴△BOC∽△COA∴OB/OC=OC/OA∴OC=2,点C(0,-2)由题意可设y=a(x+1)(x-4)得:a(0+1)(0-4)=-2∴a=0.5∴y=0.5(x+1)(x-4)ABxyOC练习、已知二次函数y=ax2-5x+c的图象如图。(1)、当x为何值时,y随x的增大而增大;(2)、当x为何值时,y<0。yOx(3)、求它的解析式和顶点坐标;2.50xyh

ABD

河北省赵县的赵州桥的桥拱是抛物线型,建立如图所示的坐标系,其函数的表达式为y=-x2,

当水位线在AB位置时,水面宽AB=30米,这时水面离桥顶的高度h是()

A、5米B、6米;C、8米;D、9米125解:当x=15时,Y=-1/25×152=-9问题1:问题4:某商场将进价40元一个的某种商品按50元一个售出时,能卖出500个,已知这种商品每个涨价一元,销量减少10个,为赚得最大利润,售价定为多少?最大利润是多少?分析:利润=(每件商品所获利润)×

(销售件数)

设每个涨价x元,那么(3)销售量可以表示为(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论