河南省商丘市梁园区2024届八年级数学第一学期期末达标检测试题含解析_第1页
河南省商丘市梁园区2024届八年级数学第一学期期末达标检测试题含解析_第2页
河南省商丘市梁园区2024届八年级数学第一学期期末达标检测试题含解析_第3页
河南省商丘市梁园区2024届八年级数学第一学期期末达标检测试题含解析_第4页
河南省商丘市梁园区2024届八年级数学第一学期期末达标检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省商丘市梁园区2024届八年级数学第一学期期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.周长38的三角形纸片(如图甲),,将纸片按图中方式折叠,使点与点重合,折痕为(如图乙),若的周长为25,则的长为()A.10 B.12 C.15 D.132.一个三角形的两边长分别是和,则第三边的长可能是()A. B. C. D.3.某校对1200名女生的身高进行了测量,身高在,这一小组的频率为,则该组的人数为()A.150人 B.300人 C.600人 D.900人4.下列各式中正确的是()A. B. C. D.5.如图所示,平分,,,以此三个中的两个为条件,另一个为结论,可构成三个命题,即,,.其中正确的命题的个数是A.0 B.1 C.2 D.36.如图,△ABC中,∠C=90°,AD平分∠BAC,BC=10,BD=6,则点D到AB的距离是()A.4 B.5 C.6 D.77.下列运算结果为的是A. B. C. D.8.已知P1(-3,y1),P2(2,y2)是一次函数y=2x+1的图象上的两个点,则y1,y2的大小关系是()A.y1>y2 B.y1<y2 C.y1=y2 D.不能确定9.江永女书诞生于宋朝,是世界上唯一一种女性文字,主要书写在精制布面、扇面、布帕等物品上,是一种独特而神奇的文化现象.下列四个文字依次为某女书传人书写的“女书文化”四个字,基本是轴对称图形的是()A.B.C.D.10.已知实数a、b满足等式x=a2+b2+20,y=a(2b-a),则x、y的大小关系是().A.x≤y B.x≥y C.x<y D.x>y二、填空题(每小题3分,共24分)11.当x=______,分式的的值为零。12.已知等腰三角形的一个内角为70°,则它的顶角度数为_____.13.一种花粉颗粒的直径约为0.0000065米,将0.0000065用科学记数法表示为___.14.已知直角三角形的两边长分别为3、1.则第三边长为________.15.如图,△ABC中,∠A=90°,AB=AC,顶点B为(﹣4,0),顶点C为(1,0),将△ABC关于y轴轴对称变换得到△A1B1C1,再将△A1B1C1关于直线x=2(即过(2,0)垂直于x轴的直线)轴对称变换得到△A2B2C2,再将△A2B2C2关于直线x=4轴对称变换得到△A3B3C3,再将△A3B3C3关于直线x=6轴对称变换得到△A4B4C4…,按此规律继续变换下去,则点A10的坐标为_____.16.阅读材料后解决问题,小明遇到下面一个问题:计算.经过观察,小明发现如果将原式进行适当的变形后可以出现特殊的结构,进而可以应用方差公式解决问题,具体解法如下:请你根据小明解决问题的方法,试着解决以下的问题:__________.17.若关于的二次三项式是完全平方式,则的值为________________.18.如图,在中,点是的中点,点是上一点,.若,则的度数为______.三、解答题(共66分)19.(10分)先化简,再求值:,其中.20.(6分)已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD=α,∠CDE=β.(1)如图,若点D在线段BC上,点E在线段AC上.①如果∠ABC=60°,∠ADE=70°,那么α=_______,β=_______.②求α、β之间的关系式.(2)是否存在不同于以上②中的α、β之间的关系式?若存在,求出这个关系式,若不存在,请说明理由.21.(6分)计算:(1)(﹣a1)3•4a(1)1x(x+1)+(x+1)1.22.(8分)先化简,再求值:其中23.(8分)如图,有一个池塘,要到池塘两侧AB的距离,可先在平地上取一个点C,从C不经过池塘可以到达点A和B,连接AC并延长到点D,使CD=CA,连接BC并延长到点E,使CE=CB,连接DE,那么量出DE的长就是A,B的距离,为什么?24.(8分)某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如图9的两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)这次调查一共抽取了名学生;(2)请将条形统计图补充完整;(3)分别求出安全意识为“淡薄”的学生占被调查学生总数的百分比、安全意识为“很强”的学生所在扇形的圆心角的度数.25.(10分)如图所示,在中,,,是边上的高.求线段的长.26.(10分)如图,在平面直角坐标系中,一次函数与轴、轴分别交于点、两点,与正比例函数交于点.(1)求一次函数和正比例函数的表达式;(2)若点为直线上的一个动点(点不与点重合),点在一次函数的图象上,轴,当时,求点的坐标.

参考答案一、选择题(每小题3分,共30分)1、B【分析】由折叠的性质可得AD=BD,由△ABC的周长为38cm,△DBC的周长为25cm,可列出两个等式,可求解.【题目详解】∵将△ADE沿DE折叠,使点A与点B重合,

∴AD=BD,

∵△ABC的周长为38cm,△DBC的周长为25cm,

∴AB+AC+BC=38cm,BD+CD+BC=AD+CD+BC=AC+BC=25cm,

∴AB=13cm=AC

∴BC=25-13=12cm

故选:B.【题目点拨】本题考查了翻折变换,熟练运用折叠的性质是本题的关键.2、C【分析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边求出第三边的取值范围,即可求解..【题目详解】设第三边为x,由三角形三条边的关系得1-2<x<1+2,∴2<x<6,∴第三边的长可能是1.故选C.【题目点拨】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.3、B【解题分析】根据频率=频数÷总数,得频数=总数×频率.【题目详解】解:根据题意,得

该组的人数为1200×0.25=300(人).

故选:B.【题目点拨】本题考查了频率的计算公式,理解公式.频率=能够灵活运用是关键.4、D【分析】依据平方根、立方根意义将各式化简依次判断即可.【题目详解】,故A错误;,故B错误;无意义,故C错误;正确.故此题选择D.【题目点拨】此题考察立方根、平方根意义,正确理解意义才能正确判断.5、C【解题分析】根据全等三角形的性质解答.【题目详解】解:错误,两个全等三角形的对应角相等,但不一定是直角;

正确,两个全等三角形的对应边相等;

正确,两个全等三角形的对应角相等,即AC平分;

故选:C.【题目点拨】考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题判断命题的真假关键是要熟悉课本中的性质定理.6、A【分析】作DE⊥AB于E,由角平分线的性质可得点D到AB的距离DE=CD,根据已知求得CD即可.【题目详解】解:作DE⊥AB于E.∵∠C=90°,AD平分∠BAC,∴DE=CD,∵BC=10,BD=6,∴CD=BC-BD=10-6=1,∴点D到AB的距离DE=1.故选:A.【题目点拨】本题考查了角平分线的性质,熟练掌握角平分线上的点到角两边的距离相等是解答本题的关键.7、D【分析】根据整式运算法则逐个分析即可.【题目详解】A.,B.,C.=,D.=.故选D【题目点拨】本题考核知识点:整式基本运算.解题关键点:掌握实数运算法则.8、B【分析】先根据一次函数y=2x+1中k=2判断出函数的增减性,再根据-3<2进行解答即可.【题目详解】∵一次函数y=2x+1中k=2>0,∴此函数是增函数,∵−3<2,∴y1<y2.故选B.【题目点拨】本题考查了一次函数的知识点,解题的关键是熟练的掌握一次函数的性质与其图象上点的坐标特征.9、A【解题分析】试题解析:选项A是轴对称图形,选项B、C、D都不是轴对称图形,判断一个图形是不是轴对称图形,关键在于看是否存在一条直线,使得这个图形关于这条直线对称.故选A.考点:轴对称图形.10、D【分析】判断x、y的大小关系,把进行整理,判断结果的符号可得x、y的大小关系.【题目详解】解:+20,

,,,

,故选:D.【题目点拨】本题考查了作差法比较大小、配方法的应用;进行计算比较式子的大小;通常是让两个式子相减,若为正数,则被减数大;反之减数大.二、填空题(每小题3分,共24分)11、1.【分析】分式的值为零:分子等于零,且分母不等于零.【题目详解】解:依题意,得

x-1=2,且x1+1≠2,

解得,x=1.

故答案是:1.【题目点拨】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为2;(1)分母不为2.这两个条件缺一不可.12、70°或40°.【分析】已知等腰三角形的一个内角为70°,根据等腰三角形的性质可分情况解答:当70°是顶角或者70°是底角两种情况.【题目详解】此题要分情况考虑:①70°是它的顶角;②70°是它的底角,则顶角是180°−70°×2=40°.故答案为70°或40°.【题目点拨】本题考查等腰三角形的性质,三角形内角和定理.掌握分类讨论思想是解决此题的关键.13、【解题分析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).0.0000065第一个有效数字前有6个0(含小数点前的1个0),从而.14、4或【解题分析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为3的边是斜边时:第三边的长为:;②长为3、3的边都是直角边时:第三边的长为:;∴第三边的长为:或4.考点:3.勾股定理;4.分类思想的应用.15、(15.5,2.5)【分析】根据对称性质可得点的坐标变化规律,由此即可求解.【题目详解】解:△ABC中,∠A=90°,AB=AC,顶点B为(﹣4,0),顶点C为(1,0),∴BC=5∴A(﹣1.5,2.5)将△ABC关于y轴轴对称变换得到△A1B1C1,∴A1(1.5,2.5)再将△A1B1C1关于直线x=2轴对称变换得到△A2B2C2,∴A2(2.5,2.5)再将△A2B2C2关于直线x=4轴对称变换得到△A3B3C3,∴A3(5.5,2.5)再将△A3B3C3关于直线x=6轴对称变换得到△A4B4C4,∴A4(6.5,2.5)…按此规律继续变换下去,A5(8.5,2.5),A6(9.5,2.5),A7(11.5,2.5)则点A10的坐标为(15.5,2.5),故答案为:(15.5,2.5).【题目点拨】本题考查了规律型点的坐标,解决本题的关键是掌握对称性.注意在寻找规律的过程中需要多写出几个点A的坐标.16、【分析】原式变形后,利用平方差公式计算即可求出值.【题目详解】解:根据题意得:,故答案为:【题目点拨】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.17、9或-7【分析】根据完全平方公式:,观察其构造,即可得出m的值.【题目详解】解:当时,;当时,.故答案为:9或-7.【题目点拨】本题主要考查的是完全平方的公式,观察公式的构成是解题的关键.18、【分析】延长AD到F使,连接BF,通过,根据全等三角形的性质得到,,等量代换得,由等腰三角形的性质得到,即可得到,进而利用三角形的内角和解答即可得.【题目详解】如图,延长AD到F,使,连接BF:∵D是BC的中点∴又∵,∴∴,,∵,,∴,∴∴∴故答案为:【题目点拨】本题主要考查的知识点有全等三角形的判定及性质、等腰三角形的性质及三角形的内角和定理,解题的关键在于通过倍长中线法构造全等三角形.三、解答题(共66分)19、1【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,代入x的值,计算即可求出值.【题目详解】解:当时,原式=【题目点拨】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20、(1)①20°,10°;②α=2β;(2)见解析.【题目详解】(1)①∵AD=AE,∴∠AED=∠ADE=70°,∠DAE=40°,又∵AB=AC,∠ABC=60°,∴∠BAC=∠C=∠ABC=60°,∴α=∠BAC-∠DAE=60°-40°=20°,β=∠AED-∠C=70°-60°=10°;②设∠ABC=x,∠ADE=y,则∠ACB=x,∠AED=y,在△DEC中,y=β+x,在△ABD中,α+x=y+β,∴α=2β.(2)如图1,点E在CA延长线上,点D在线段BC上,设∠ABC=x,∠ADE=y,则∠ACB=x,∠AED=y,在△ABD中,x+α=β-y,在△DEC中,x+y+β=180°,∴α=2β-180°.当点E在CA的延长线上,点D在CB的延长线上,如图2,同①的方法可得α=180°−2β.考点:等腰三角形的性质;三角形内角和定理;三角形的外角性质.21、(2)-4a7;(2)3x2+4x+2.【解题分析】试题分析:(2)根据幂的乘方、同底数幂的乘法进行计算即可;(2)根据单项式乘以多项式以及完全平方公式进行计算即可.解:(2)原式=﹣a6•4a=﹣4a7;(2)原式=2x2+2x+x2+2x+2=3x2+4x+2.22、-2【分析】先利用完全平方式展开化简,再将x,y的值代入求解即可.【题目详解】解:原式=(+2x-2xy+y--y)=(-4xy+2x)=-2x+8y-4,代入得该式=-2.【题目点拨】本题主要考察整式化简,细心化简是解题关键.23、量出DE的长就等于AB的长,理由详见解析.【分析】利用“边角边”证明△ABC和△DEC全等,再根据全等三角形对应边相等解答.【题目详解】量出DE的长就等于AB的长,理由如下:在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),∴AB=DE.【题目点拨】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.24、(1)120;(2)详见解析;(3)10%;108°.【解题分析】(1)根据安全意识一般的有18人,所占的百分比是15%,据此即可求得调查的总人数,再根据各层次人数之和等于总人数求得“较强”的人数及百分比的概念求得“很强、淡薄”的百分比可补全图形;(2)总人数乘以“较强”和“很强”的百分比之和.【题目详解】解:(1)调查的总人数是:18÷15%=120(人),;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论