![2024届海南省定安县联考数学八上期末达标检测模拟试题含解析_第1页](http://file4.renrendoc.com/view/e677b5c2c808b4f3fb67af3fe728bff9/e677b5c2c808b4f3fb67af3fe728bff91.gif)
![2024届海南省定安县联考数学八上期末达标检测模拟试题含解析_第2页](http://file4.renrendoc.com/view/e677b5c2c808b4f3fb67af3fe728bff9/e677b5c2c808b4f3fb67af3fe728bff92.gif)
![2024届海南省定安县联考数学八上期末达标检测模拟试题含解析_第3页](http://file4.renrendoc.com/view/e677b5c2c808b4f3fb67af3fe728bff9/e677b5c2c808b4f3fb67af3fe728bff93.gif)
![2024届海南省定安县联考数学八上期末达标检测模拟试题含解析_第4页](http://file4.renrendoc.com/view/e677b5c2c808b4f3fb67af3fe728bff9/e677b5c2c808b4f3fb67af3fe728bff94.gif)
![2024届海南省定安县联考数学八上期末达标检测模拟试题含解析_第5页](http://file4.renrendoc.com/view/e677b5c2c808b4f3fb67af3fe728bff9/e677b5c2c808b4f3fb67af3fe728bff95.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届海南省定安县联考数学八上期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知等腰三角形的两边长分别为2cm和4cm,则它的周长为()A.8B.10C.8或10D.62.如图,已知,,,要在长方体上系一根绳子连接,绳子与交于点,当所用绳子最短时,的长为()A.8 B. C.10 D.3.下列图形中,不是运用三角形的稳定性的是()A. B. C. D.4.若关于的方程的解是正数,则的取值范围是()A. B.且 C.且 D.且5.若实数、满足,且,则一次函数的图象可能是()A. B. C. D.6.已知,,且,则的值为()A.2或12 B.2或 C.或12 D.或7.多项式分解因式的结果是()A. B. C. D.8.如图,中,为线段AB的垂直平分线,交于点E,交于D,连接,若,则的长为()A.6 B.3 C.4 D.29.下列因式分解正确的是()A. B.C. D.10.十二边形的内角和为()A.1620° B.1800° C.1980° D.2160°11.若分式2x-3有意义,则x的取值范围是(A.x>3 B.x=3 C.x≠3 D.x<312.估计的值()A.在1和2之间 B.在2和3之间 C.在3和4之间 D.在4和5之间二、填空题(每题4分,共24分)13.函数y中自变量x的取值范围是___________.14.已知,,则______.15.若一个多边形的内角和是900º,则这个多边形是边形.16.若关于x的分式方程有增根,则m的值为_____.17.如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF,若∠ABE=20°,那么∠EFC′的度数为______.18.如图,一束平行太阳光线、照射到正五边形上,,则的度数是________.三、解答题(共78分)19.(8分)先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.(1)分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法.如:ax+by+bx+ay=(ax+bx)+(ay+by)=x(a+b)+y(a+b)=(a+b)(x+y)1xy+y1﹣1+x1=x1+1xy+y1﹣1=(x+y)1﹣1=(x+y+1)(x+y﹣1)(1)拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如:x1+1x﹣3=x1+1x+1﹣4=(x+1)1﹣11=(x+1+1)(x+1﹣1)=(x+3)(x﹣1)请你仿照以上方法,探索并解决下列问题:(1)分解因式:a1﹣b1+a﹣b;(1)分解因式:x1﹣6x﹣7;(3)分解因式:a1+4ab﹣5b1.20.(8分)小明在证明“有两个角相等的三角形是等腰三角形”这一命题时,先画出图形,再写出“已知”,“求证”(如图),证明时他对所作的辅助线描述如下:“过点作的中垂线,垂足为”.(1)请你判断小明辅助线的叙述是否正确;如果不正确,请改正.(2)根据正确的辅助线的做法,写出证明过程.21.(8分)如图,在中,,,,为边上的两个点,且,.(1)若,求的度数;(2)的度数会随着度数的变化而变化吗?请说明理由.22.(10分)如图,在△中,是边的垂直平分线,交于、交于,连接.(1)若,求的度数;(2)若△的周长为,△的周长为,求的长.23.(10分)阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣1)2=0,∴(m﹣n)2=0,(n﹣1)2=0,∴n=1,m=1.根据你的观察,探究下面的问题:(1)已知x2+2xy+2y2+2y+1=0,求2x+y的值;(2)已知a﹣b=1,ab+c2﹣6c+13=0,求a+b+c的值.24.(10分)五月初,我市多地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共2000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同(1)求甲、乙两种救灾物品每件的价格各是多少元?(2)经调查,灾区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金多少元?25.(12分)某小区积极创建环保示范社区,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,已知温馨提示牌的单价为每个30元,垃圾箱的单价为每个90元,共需购买温馨提示牌和垃圾箱共100个.(1)若规定温馨提示牌和垃圾箱的个数之比为1:4,求所需的购买费用;(2)若该小区至多安放48个温馨提示牌,且费用不超过6300元,请列举所有购买方案,并说明理由.26.用无刻度直尺作图并解答问题:如图,和都是等边三角形,在内部做一点,使得,并给予证明.
参考答案一、选择题(每题4分,共48分)1、B【解题分析】题目给出等腰三角形有两条边长为2和4,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【题目详解】当2是腰时,2,2,4不能组成三角形,应舍去;当4是腰时,4,4,2能够组成三角形.∴周长为10cm,故选B.【题目点拨】本题考查等腰三角形的性质及三角形三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.2、C【分析】将长方体的侧面展开图画出来,然后利用两点之间线段最短即可确定最短距离,再利用勾股定理即可求出最短距离.【题目详解】将长方体的侧面展开,如图,此时AG最短由题意可知∴∴故选:C.【题目点拨】本题主要考查长方体的侧面展开图和勾股定理,掌握勾股定理是解题的关键.3、C【解题分析】分析:利用三角形的稳定性解答即可.详解:对于A、B、D选项,都含有三角形,故利用了三角形的稳定性;而C选项中,拉闸门是用到了四边形的不稳定性.故选C.点睛:本题主要考查了三角形的稳定性,需理解稳定性在实际生活中的应用;首先,明确能体现出三角形的稳定性,则说明物体中必然存在三角形;4、C【分析】解分式方程,可得分式方程的解,根据分式方程的解是正数且分式方程有意义,可得不等式组,解不等式组,可得答案.【题目详解】,方程两边都乘以(x−2),得:2x+m=3x−6,解得:x=m+6,由分式方程的意义,得:m+6−2≠0,即:m≠−4,由关于x的方程的解是正数,得:m+6>0,解得:m>−6,∴m的取值范围是:m>−6且m≠−4,故选:C.【题目点拨】本题主要考查根据分式方程的解的情况,求参数的范围,掌握解分式方程,是解题的关键.5、A【分析】根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【题目详解】解:因为实数k、b满足k+b=0,且k>b,
所以k>0,b<0,
所以它的图象经过一、三、四象限,
故选:A.【题目点拨】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.6、D【题目详解】根据=5,=7,得,因为,则,则=5-7=-2或-5-7=-12.故选D.7、A【分析】根据提取公因式和平方差公式进行因式分解即可解答.【题目详解】解:;故选:A.【题目点拨】本题考查了利用提取公因式和平方差公式进行因式分解,熟练掌握是解题的关键.8、B【分析】利用垂直平分线的性质得到AD=BD=6,∠A=∠ABD=30°,再根据∠C=90°得到∠CBD=30°,从而根据30°所对的直角边是斜边的一半得到结果.【题目详解】解:∵DE垂直平分AB,∴AD=BD=6,∠A=∠ABD=30°,∵∠C=90°,∴∠CBD=∠ABC-∠ABD=30°,∴CD=BD=3,故选B.【题目点拨】本题考查了垂直平分线的性质,含30°角的直角三角形的性质,解题的关键是熟练掌握含30°角的直角三角形的性质,即在直角三角形中,30°角所对的直角边等于斜边的一半.9、D【解题分析】直接利用提取公因式法以及公式法分解因式,进而判断即可.【题目详解】A、,故此选项错误;B、,无法分解因式,故此选项错误;C、,无法分解因式,故此选项错误;D、,正确,故选D.【题目点拨】本题考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.10、B【分析】根据多边形内角和公式解答即可;【题目详解】解:十二边形的内角和为:(12﹣2)•180°=1800°.故选B.【题目点拨】本题考查了多边形的内角和的求法,牢记多边形公式(n-2)×180(n≥3)是解答本题的关键.11、C【解题分析】根据分式成立的条件求解.【题目详解】解:由题意可知x-3≠0解得x≠3故选:C.【题目点拨】本题考查分式成立的条件,掌握分母不能为零是解题关键.12、B【分析】先根据二次根式的乘法法则得出的值,再估算即可【题目详解】解:∵∴故选:B【题目点拨】本题主要考查了二次根式的乘法和估算无理数的大小,掌握运算法则是解题的关键.二、填空题(每题4分,共24分)13、【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不等于1.【题目详解】解:根据题意得:x-2≠1,解得:x≠2.故答案为:x≠2.【题目点拨】本题考查了分式有意义的条件,解题的关键是掌握当函数表达式是分式时,考虑分式的分母不能为1.14、1【分析】原式利用完全平方公式变形,将已知等式代入计算即可求出值.【题目详解】解:∵,,
∴原式,故答案为:1.【题目点拨】本题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.15、七【分析】根据多边形的内角和公式,列式求解即可.【题目详解】设这个多边形是边形,根据题意得,,解得.故答案为.【题目点拨】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.16、1【解题分析】试题分析:增根是化为整式方程后产生的不适合分式方程的根,所以应先增根的可能值,让最简公分母x-1=0,得到x=1,然后代入化为整式方程的方程算出m的值.试题解析:方程两边都乘以(x-1),得x-2(x-1)=m∵原方程有增根∴最简公分母x-1=0解得:x=1,当x=1时,m=1故m的值是1.考点:分式方程的增根.17、125°【题目详解】解:Rt△ABE中,∠ABE=20°,∴∠AEB=70°,由折叠的性质知:∠BEF=∠DEF,而∠BED=180°﹣∠AEB=110°,∴∠BEF=55°,易知∠EBC=∠D=∠BC′F=∠C=90°,∴BE∥C′F,∴∠EFC′=180°﹣∠BEF=125°.故答案为125°.【题目点拨】本题考查翻折变换(折叠问题).18、【分析】根据正五边形的性质与平行线的性质,即可求解.【题目详解】∵在正五边形中,∴∠BAE=,∵∥,∴∠BAF+∠ABG=180°,∴=180°-108°-46°=.故答案为:.【题目点拨】本题主要考查正五边形的性质与平行线的性质,掌握正五边形的每个内角等于108°以及两直线平行,同旁内角互补,是解题的关键.三、解答题(共78分)19、(1);(1);(3).【解题分析】试题分析:(1)仿照例(1)将前两项和后两项分别分作一组,然后前两项利用平方差公式分解,然后提出公因式(a-b)即可;(1)仿照例(1)将-7拆成9-16,然后前三项利用完全平方公式分解后,再用平方差公式分解即可;(3)仿照例(1)将-5b1拆成4b1-9b1,然后前三项利用完全平方公式分解后,再用平方差公式分解即可.试题解析:解:(1)==;(1)原式====;(3)原式====.点睛:本题考查了因式分解的综合应用,熟悉因式分解的方法和读懂例题是解决此题的关键.20、(1)不正确,应该是:过点作;(2)见解析【分析】(1)不正确.过一点可以作已知直线的垂线,不能作线段的中垂线.(2)利用证明即可.【题目详解】解:(1)不正确.应该是:过点作.(2)∵,∴,∵,,∴,∴.【题目点拨】本题考查等腰三角形的判定,线段的垂直平分线的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.21、(1)35°;(2)的度数不会随着度数的变化而变化,是35°.【分析】(1)根据等腰三角形性质求出∠ACE=∠AEC,∠BCD=∠BDC,得∠BCE=∠ACB-∠ACE=110°-75°=35°;再根据∠DCE=∠BCD-∠BCE可得;(2)解题方法如(1),求∠ACE=∠AEC=;∠BCD=∠BDC=,∠BCE=∠ACB-∠ACE,所以∠DCE=∠BCD-∠BCE=-(110°-).【题目详解】因为,所以∠ACE=∠AEC=;∠BCD=∠BDC=所以∠BCE=∠ACB-∠ACE=110°-75°=35°所以∠DCE=∠BCD-∠BCE=70°-35°=35°;(2)的度数不会随着度数的变化而变化,理由:因为在中,,所以因为,所以∠ACE=∠AEC=;∠BCD=∠BDC=所以∠BCE=∠ACB-∠ACE=110°-所以∠DCE=∠BCD-∠BCE=-(110°-)=35°故的度数不会随着度数的变化而变化,是35°.【题目点拨】考核知识点:等腰三角形.理解等腰三角形边角关系是关键.22、(1)30°(2)6cm【解题分析】(1)首先计算出∠ABC的度数,再根据线段垂直平分线上任意一点,到线段两端点的距离相等可得AD=BD,进而可得∠ABD=∠A=40°,然后可得答案;(2)根据线段垂直平分线的性质可得AD=DB,AE=BE,然后再计算出AC+BC的长,再利用△ABC的周长为26cm可得AB长,进而可得答案.【题目详解】解:(1)∵,∴,,∴,∵是边的垂直平分线,∴,∴,∴;(2)∵△的周长为,∴,∴,∴,∵△的周长为,∴,∴,∴.故答案为(1)30°;(2)6cm.【题目点拨】本题主要考查了线段垂直平分线上的点到线段两端点的距离相等的性质,三角形的内角和定理,熟练掌握性质求出AD=BD是解题的关键.23、(1)1;(2)2.【分析】(1)根据题意,可以将题目中的式子化为材料中的形式,从而可以得到x、y的值,从而可以得到2x+y的值;(2)根据a-b=1,ab+c2-6c+12=0,可以得到a、b、c的值,从而可以得到a+b+c的值.【题目详解】解:(1)∵x2+2xy+2y2+2y+1=0,∴(x2+2xy+y2)+(y2+2y+1)=0,∴(x+y)2+(y+1)2=0,∴x+y=0,y+1=0,解得,x=1,y=−1,∴2x+y=2×1+(−1)=1;(2)∵a−b=1,∴a=b+1,∴将a=b+1代入ab+c2−6c+12=0,得b2+1b+c2−6c+12=0,∴(b2+1b+1)+(c2−6c+9)=0,∴(b+2)2+(c−2)2=0,∴b+2=0,c−2=0,解得,b=−2,c=2,∴a=b+1=−2+1=2,∴a+b+c=2−2+2=2.【题目点拨】此题考查了因式分解方法的应用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.此题解答的关键是要明确:用因式分解的方法将式子变形时,根据已知条件,变形的可以是整个代数式,也可以是其中的一部分.24、(1)甲、乙两种救灾物品每件的价格各是70元、1元;(2)需筹集资金125000元.【分析】(1)设每件乙种物品的价格是x元,则每件甲种物品的价格是(x+10)元,根据“用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同”列出方程,求解即可;(2)设甲种物品件数为m件,则乙种物品件数为3m件,根据”该爱心组织按照此需求的比例购买这2000件物品”列出方程,求解即可.【题目详解】(1)设每件乙种物品的价格是x元,则每件甲种物品的价格是(x+10)元,根据题意得,,解得:x=1.经检验,x=1是原方程的解.答:甲、乙两种救灾物品每件的价格各是70元、1元;(2)设甲种物品件数为m件,则乙种物品件数为3m件,根据题意得,m+3m=2000,解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年婚礼汽车服务行业深度研究分析报告
- 废机油深加工润滑油基础油可行性研究报告申请备案
- 二手挖机购买合同范本
- 仓储与快递合同范本
- 2025-2031年中国万能磨刀机行业市场调查研究及发展趋势预测报告
- 2025年度经济适用房改造升级工程承包合同范本
- it设备合同范本
- 企业帮扶合同范本
- 借贷合同与欠款合同范本
- 上海epc合同范本
- GB/T 45177-2024人工光型植物工厂光环境技术规范
- 2024-2025年天津河西区七年级上学期期末道德与法治试题(含答案)
- 2025年个人学习领导讲话心得体会和工作措施例文(6篇)
- 2025大连机场招聘109人易考易错模拟试题(共500题)试卷后附参考答案
- 2020-2025年中国中小企业行业市场调研分析及投资战略咨询报告
- 物流中心原材料入库流程
- 长沙市2025届中考生物押题试卷含解析
- 2024-2025学年广东省深圳市宝安区八年级(上)期末语文试卷
- 2024年芽苗菜市场调查报告
- 新版中华人民共和国会计法解读学习课件
- 乡镇新能源利用项目方案
评论
0/150
提交评论