![2024届湖南省永州零冷两区七校联考八上数学期末学业水平测试模拟试题含解析_第1页](http://file4.renrendoc.com/view/a0801d6fcf58600eadd76d5b8d9ec527/a0801d6fcf58600eadd76d5b8d9ec5271.gif)
![2024届湖南省永州零冷两区七校联考八上数学期末学业水平测试模拟试题含解析_第2页](http://file4.renrendoc.com/view/a0801d6fcf58600eadd76d5b8d9ec527/a0801d6fcf58600eadd76d5b8d9ec5272.gif)
![2024届湖南省永州零冷两区七校联考八上数学期末学业水平测试模拟试题含解析_第3页](http://file4.renrendoc.com/view/a0801d6fcf58600eadd76d5b8d9ec527/a0801d6fcf58600eadd76d5b8d9ec5273.gif)
![2024届湖南省永州零冷两区七校联考八上数学期末学业水平测试模拟试题含解析_第4页](http://file4.renrendoc.com/view/a0801d6fcf58600eadd76d5b8d9ec527/a0801d6fcf58600eadd76d5b8d9ec5274.gif)
![2024届湖南省永州零冷两区七校联考八上数学期末学业水平测试模拟试题含解析_第5页](http://file4.renrendoc.com/view/a0801d6fcf58600eadd76d5b8d9ec527/a0801d6fcf58600eadd76d5b8d9ec5275.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖南省永州零冷两区七校联考八上数学期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列各式中的变形,错误的是(()A. B. C. D.2.等腰三角形的一个角是80°,则它的底角是()A.50° B.80° C.50°或80° D.20°或80°3.下列四个多项式,能因式分解的是()A.a-1 B.a2+1C.x2-4y D.x2-6x+94.纳米是长度单位,纳米技术已广泛应用于各个领域,已知1纳米=0.000000001米,某原子的直径大约是2纳米,用科学记数法表示该原子的直径约为()A.0.2×10-9米 B.2×105.下列关于一次函数:的说法错误的是()A.它的图象与坐标轴围成的三角形面积是B.点在这个函数的图象上C.它的函数值随的增大而减小D.它的图象经过第一、二、三象限6.估计的值在()A.2到3之间 B.3到4之间 C.4到5之间 D.5到6之间7.如果把分式中的x和y都扩大3倍,那么分式的值()A.扩大3倍 B.缩小3倍 C.缩小6倍 D.不变8.下列智能手机的功能图标中,既是轴对称图形又是中心对称图形的是()A. B.C. D.9.抛一枚硬币10次,有6次出现正面,4次出现反面,则出现正面的频率是()A.6 B.4 C. D.10.下列银行标志中,既不是中心对称图形也不是轴对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.一个等腰三角形的两边长分别为4和8,则这个等腰三角形的周长是__________.12.如图,是和的公共斜边,AC=BC,,E是的中点,联结DE、CE、CD,那么___________________.13.如果一组数据﹣3,﹣2,0,1,x,6,9,12的平均数为3,那么这组数据的中位数是_____.14.如果点P在第二象限内,点P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为______.15.若关于x的分式方程的解是正数,则实数m的取值范围是_________16.若关于,的方程组的解是,则__________.17.如图,将沿着过中点的直线折叠,使点落在边上的处,称为第1次操作,折痕到的距离记为,还原纸片后,再将沿着过中点的直线折叠,使点落在边上的处,称为第2次操作,折痕到的距离记为,按上述方法不断操作下去…经过第2020次操作后得到的折痕到的距离记为,若,则的值为______.18.点关于轴对称的点的坐标是__________.三、解答题(共66分)19.(10分)某同学碰到这么一道题“分解因式:a4+4”,不会做,去问老师,老师说:“能否变成平方差的形式?在原式加上4a2,再减去4a2,这样原式化为(a4+4a2+4)﹣4a2,……”,老师话没讲完,此同学就恍然大悟,他马上就做好了此题.你会吗?请完成此题.20.(6分)(1)如图1,在△ABC中,D是BC的中点,过D点画直线EF与AC相交于E,与AB的延长线相交于F,使BF=CE.①已知△CDE的面积为1,AE=kCE,用含k的代数式表示△ABD的面积为;②求证:△AEF是等腰三角形;(2)如图2,在△ABC中,若∠1=2∠2,G是△ABC外一点,使∠3=∠1,AH∥BG交CG于H,且∠4=∠BCG﹣∠2,设∠G=x,∠BAC=y,试探究x与y之间的数量关系,并说明理由;(3)如图3,在(1)、(2)的条件下,△AFD是锐角三角形,当∠G=100°,AD=a时,在AD上找一点P,AF上找一点Q,FD上找一点M,使△PQM的周长最小,试用含a、k的代数式表示△PQM周长的最小值.(只需直接写出结果)21.(6分)已知,点.(1)求的面积;(2)画出关于轴的对称图形.22.(8分)(1)计算:(1+)2﹣×;(2)解方程组:.23.(8分)如图,已知等腰三角形中,,,点是内一点,且,点是外一点,满足,且平分,求的度数24.(8分)先化简代数式,再从-2,2,0三个数中选一个恰当的数作为a的值代入求值.25.(10分)甲乙两地相距50千米.星期天上午8:00小聪同学在父亲陪同下骑山地车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程(千米)与小聪行驶的时间(小时)之间的函数关系如图所示,小明父亲出发多少小时,行进中的两车相距8千米.26.(10分)某茶叶经销商以每千克元的价格购进一批宁波白茶鲜茶叶加工后出售,已知加工过程中质量损耗了,该商户对该茶叶试销期间,销售单价不低于成本单价,且每千克获利不得高于成本单价的,经试销发现,每天的销售量(千克)与销售单价(元/千克)符合一次函数,且时,;时,.(1)求一次函数的表达式.(2)若该商户每天获得利润为元,试求出销售单价的值.
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变,可得答案.【题目详解】A、,故A正确;B、分子、分母同时乘以﹣1,分式的值不发生变化,故B正确;C、分子、分母同时乘以3,分式的值不发生变化,故C正确;D、≠,故D错误;故选D.【题目点拨】本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变.2、C【分析】因为题中没有指明该角是顶角还是底角,则应该分两种情况进行分析.【题目详解】解:①当顶角是80°时,它的底角=(180°﹣80°)=50°;②底角是80°.所以底角是50°或80°.故选:C.【题目点拨】本题考查了等腰三角形底角的问题,掌握等腰三角形的性质是解题的关键.3、D【解题分析】试题分析:利用平方差公式及完全平方公式的结构特征判断即可.试题解析:x2-6x+9=(x-3)2.故选D.考点:2.因式分解-运用公式法;2.因式分解-提公因式法.4、C【解题分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】解:2纳米=2×0.000000001米=0.000000002米=2×10-9米,故本题答案为:C.【题目点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5、D【分析】求出一次函数的图象与x轴、y轴的交点坐标,再利用三角形的面积公式可求出与坐标轴围成的三角形面积,可判断A;将点P(3,1)代入表达式即可判断B;根据x的系数可判断函数值随的变化情况,可判断C;再结合常数项可判断D.【题目详解】解:令x=0,则y=2,令y=0,则x=6,∴图象与坐标轴围成的三角形面积是,故选项A正确;令x=3,代入,则y=1,∴点P(3,1)在函数图象上,故选项B正确;∵<0,∴一次函数的函数值随的增大而减小,故选项C正确;∵<0,2>0,∴它的图象经过第一、二、四象限,故选项D错误.故选D.【题目点拨】本题考查了一次函数图象上点的坐标特征、一次函数的性质以及三角形的面积,逐一分析四个选项的正误是解题的关键.6、B【分析】利用”夹逼法“得出的范围,继而也可得出+1的范围.【题目详解】∵4<6<9,∴,即,∴,故选B.7、A【分析】把原分式中的x换成3x,把y换成3y进行计算,再与原分式比较即可.【题目详解】解:把原分式中的x换成3x,把y换成3y,那么==3×.故选:A.【题目点拨】考核知识点:分式性质.运用性质变形是关键.8、C【分析】根据轴对称图形与中心对称图形的概念求解.【题目详解】A、图形既不是轴对称图形是中心对称图形,
B、图形是轴对称图形,
C、图形是轴对称图形,也是中心对称轴图形,
D、图形是轴对称图形.
故选C.【题目点拨】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.9、C【分析】根据频率的公式:频率=频数÷总数,即可求解.【题目详解】由题意,得出现正面的频率是,故选:C.【题目点拨】此题主要考查对频率的理解,熟练掌握,即可解题.10、D【分析】根据轴对称图形与中心对称图形的概念求解.【题目详解】解:A、是轴对称图形,也是中心对称图形,故A选项不合题意;B、是轴对称图形,不是中心对称图形,故B选项不合题意;C、是轴对称图形,也是中心对称图形.故C选项不合题意;D、不是轴对称图形,也不是中心对称图形,故D选项符合题意;故选D.【题目点拨】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.二、填空题(每小题3分,共24分)11、1【分析】题目给出等腰三角形有两条边长为4和8,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【题目详解】∵4+4=8∴腰的长不能为4,只能为8∴等腰三角形的周长=2×8+4=1,故答案为1.【题目点拨】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.12、1【分析】先证明A、C、B、D四点共圆,得到∠DCB与∠BAD的是同弧所对的圆周角的关系,得到∠DCB的度数,再证∠ECB=45°,得出结论.【题目详解】解:∵AB是Rt△ABC和Rt△ABD的公共斜边,E是AB中点,∴AE=EB=EC=ED,∴A、C、B、D在以E为圆心的圆上,∵∠BAD=32°,∴∠DCB=∠BAD=32°,又∵AC=BC,E是Rt△ABC的中点,∴∠ECB=45°,∴∠ECD=∠ECB-∠DCB=1°.故答案为:1.【题目点拨】本题考查直角三角形的性质、等腰三角形性质、圆周角定理和四点共圆问题,综合性较强.13、1【解题分析】本题可结合平均数的定义先算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【题目详解】数据﹣3,﹣2,0,1,x,6,9,12的平均数为3,即有(﹣3﹣2+0+1+x+6+9+12)=3,解得:x=1.将这组数据从小到大重新排列后为﹣3,﹣2,0,1,1,6,9,12;这组数据的中位数是=1.故答案为:1.【题目点拨】本题考查的是中位数和平均数的定义.平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.中位数把样本数据分成了相同数目的两部分.14、【解题分析】试题分析:由点P在第二象限内,可知横坐标为负,纵坐标为正,又因为点P到x轴的距离是4,到y轴的距离是3,可知横坐标为-3,纵坐标为4,所以点P的坐标为(-3,4).考点:象限内点的坐标特征.15、且m-4【分析】先解方程求出x=m+6,根据该方程的解是正数,且x-20列得,计算即可.【题目详解】2x+m=3(x-2)x=m+6,∵该方程的解是正数,且x-20,∴,解得且x-4,故答案为:且m-4.【题目点拨】此题考查分式的解的情况求字母的取值范围,解题中注意不要忽略分式的分母不等于零的情况.16、1【分析】把代入方程组可求解到m、n的值,之后代入计算即可求解本题.【题目详解】解:把代入方程组得,;故答案为:1.【题目点拨】本题考查的是方程组的定义,正确理解题意并计算即可.17、【分析】根据中点的性质及折叠的性质可得DA=DA₁=DB,从而可得∠ADA₁=2∠B,结合折叠的性质可得.,∠ADA₁=2∠ADE,可得∠ADE=∠B,继而判断DE//
BC,得出DE是△ABC的中位线,证得AA₁⊥BC,AA₁=2,由此发现规律:同理…于是经过第n次操作后得到的折痕Dn-1
En-1到BC的距离,据此求得的值.【题目详解】解:如图连接AA₁,由折叠的性质可得:AA₁⊥DE,DA=
DA₁
,A₂、A₃…均在AA₁上又∵
D是AB中点,∴DA=
DB
,
∵DB=
DA₁
,
∴∠BA₁D=∠B
,
∴∠ADA₁=∠B+∠BA₁D=2∠B,
又∵∠ADA₁
=2∠ADE
,
∴∠ADE=∠B
∵DE//BC,
∴AA₁⊥BC
,
∵h₁=1
∴AA₁
=2,
∴
同理:;
;
…
∴经过n次操作后得到的折痕Dn-1En-1到BC的距离∴【题目点拨】本题考查了中点性质和折叠的性质,本题难度较大,要从每次折叠发现规律,求得规律的过程是难点.18、(2,-1)【分析】关于轴对称的点坐标(横坐标不变,纵坐标变为相反数)【题目详解】点关于轴对称的点的坐标是(2,-1)故答案为:(2,-1)【题目点拨】考核知识点:用坐标表示轴对称.理解:关于x轴对称的点的坐标的特点是:横坐标不变,纵坐标互为相反数;三、解答题(共66分)19、见解析【分析】先利用“配方法”分解因式,然后根据平方差公式因式分解即可解答.【题目详解】解:a4+4=(a4+4a2+4)﹣4a2=(a2+2)2﹣(2a)2=(a2+2+2a)(a2+2﹣2a)=(a2+2a+2)(a2﹣2a+2).【题目点拨】本题考查了配方法分解因式,公式法分解因式,掌握因式分解的方法是解题的关键.20、(1)①k+1;②见解析;(2)y=x+45°,理由见解析;(3)【分析】(1)①先根据AE与CE之比求出△ADE的面积,进而求出ADC的面积,而D中BC中点,所以△ABD面积与△ADC面积相等;②延长BF至R,使FR=BF,连接RC,注意到D是BC中点,过B过B点作BG∥AC交EF于G.得,再利用等腰三角形性质和判定即可解答;(2)设∠2=α.则∠3=∠1=2∠2=2α,根据平行线性质及三角形外角性质可得∠4=α,再结合三角形内角和等于180°联立方程即可解答;(3)分别作P点关于FA、FD的对称点P'、P'',则PQ+QM+PM=P'Q+QM+MP“≥P'P''=FP,当FP垂直AD时取得最小值,即最小值就是AD边上的高,而AD已知,故只需求出△ADF的面积即可,根据AE=kEC,AE=AF,CE=BF,可以将△ADF的面积用k表示出来,从而问题得解.【题目详解】解:(1)①∵AE=kCE,∴S△DAE=kS△DEC,∵S△DEC=1,∴S△DAE=k,∴S△ADC=S△DAE+S△DEC=k+1,∵D为BC中点,∴S△ABD=S△ADC=k+1.②如图1,过B点作BG∥AC交EF于G.∴,在△BGD和△CED中,,∴(ASA),∴BG=CE,又∵BF=CE,∴BF=BG,∴,∴∴AF=AE,即△AEF是等腰三角形.(2)如图2,设AH与BC交于点N,∠2=α.则∠3=∠1=2∠2=2α,∵AH∥BG,∴∠CNH=∠ANB=∠3=2α,∵∠CNH=∠2+∠4,∴2α=α+∠4,∴∠4=α,∵∠4=∠BCG﹣∠2,∴∠BCG=∠2+∠4=2α,在△BGC中,,即:,在△ABC中,,即:,联立消去得:y=x+45°.(3)如图3,作P点关于FA、FD的对称点P'、P'',连接P'Q、P'F、PF、P''M、P''F、P'P'',则FP'=FP=FP'',PQ=P'Q,PM=P''M,∠P'FQ=∠PFQ,∠P''FM=∠PFM,∴∠P'FP''=2∠AFD,∵∠G=100°,∴∠BAC=∠G+45°=120°,∵AE=AF,∴∠AFD=30°,∴∠P'FP''=2∠AFD=60°,∴△FP'P''是等边三角形,∴P'P''=FP'=FP,∴PQ+QM+PM=P'Q+QM+MP''≥P'P''=FP,当且仅当P'、Q、M、P''四点共线,且FP⊥AD时,△PQM的周长取得最小值.,,,,,当时,,的周长最小值为.【题目点拨】本题是三角形综合题,涉及了三角形面积之比与底之比的关系、全等三角形等腰三角形性质和判定、轴对称变换与最短路径问题、等边三角形的判定与性质等众多知识点,难度较大.值得强调的是,本题的第三问实际上是三角形周长最短问题通过轴对称变换转化为两点之间线段最短和点到直线的距离垂线段最短.21、(1)4;(2)见解析【分析】(1)先确定出点A、B、C的位置,再连接AC、CB、AB,然后过点C向x、y轴作垂线,垂足为D、E,根据计算即可;(2)作出点关于x轴的对称点,再连接点即可.【题目详解】(1)如图,确定出点A、B、C的位置,连接AC、CB、AB,过点C向x、y轴作垂线,垂足为D、E,由图可知:;(2)点关于x轴的对称点为,连接点即为所求,如图所示:【题目点拨】本题主要考查的是点的坐标与图形的性质,明确是解题的关键.22、(1)4+;(2).【分析】(1)利用完全平方公式,根据二次根式得运算法则计算即可得答案;(2)利用加减消元法解方程组即可得答案.【题目详解】(1)原式=1+2+3﹣=4+2﹣=4+.(2)①+②得3x=6,解得:x=2,把x=2代入①得2+y=1,解得:y=﹣1,∴方程组的解为.【题目点拨】本题考查了二次根式的运算和解二元一次方程组,熟练掌握二次根式得运算法则及加减法解二元一次方程组是解题关键.23、28°.【分析】连接EC,根据题目已知条件可证的△ACE≌
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 劳务合作协议(15篇)
- 青春励志演讲稿2024(33篇)
- 2024-2025学年山东省德州市临邑博文中学高一上学期第三次月考历史试卷
- 2025年公共卫生间设施改善施工合同样本
- 2025年双方解除购销合同协议的分析
- 2025年采购合作合同标准文本
- 2025年储藏室租赁合同样本
- 2025年个人资金周转借款协议书
- 2025年节能、高效干燥设备项目立项申请报告模稿
- 2025年信息技术租赁回购协议书
- 医疗行业提高医院服务质量的改进方案三篇
- 预应力空心方桩打桩工程监理实施细则
- 飞机仪电与飞控系统原理智慧树知到期末考试答案章节答案2024年中国人民解放军海军航空大学
- 数据分析应用项目化教程(Python) 课件 项目1 认识数据分析
- DL-T-5759-2017配电系统电气装置安装工程施工及验收规范
- JJG(交通) 192-2023 负压筛析仪
- 城市更新模式探讨
- 农行网点负责人述职报告范本
- 常见军事训练伤的康复流程
- 2024年湖南高速铁路职业技术学院单招职业适应性测试题库及答案解析
- 头皮脓肿的护理查房
评论
0/150
提交评论