北京市师范大附属中学2024届数学八上期末学业质量监测模拟试题含解析_第1页
北京市师范大附属中学2024届数学八上期末学业质量监测模拟试题含解析_第2页
北京市师范大附属中学2024届数学八上期末学业质量监测模拟试题含解析_第3页
北京市师范大附属中学2024届数学八上期末学业质量监测模拟试题含解析_第4页
北京市师范大附属中学2024届数学八上期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市师范大附属中学2024届数学八上期末学业质量监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知:如图,∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA2.如果三角形的一个内角等于其它两个内角的差,那么这个三角形是()A.锐角三角形 B.钝角三角形C.直角三角形 D.斜三角形3.如图,一直线与两坐标轴的正半轴分别交于,两点,是线段上任意一点(不包括端点),过点分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为8,则该直线的函数表达式是()A. B. C. D.4.若是完全平方式,则的值为()A.±8 B.或 C. D.5.如图,甲、乙、丙、丁四位同学给出了四种表示大长方形面积的多项式:①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn.你认为其中正确的有()A.①② B.③④ C.①②③ D.①②③④6.以下列数值为长度的各组线段中,能组成三角形的是()A.2,4,7 B.3,3,6 C.5,8,2 D.4,5,67.下列各式中,是一元一次不等式的是()A.5+4>8 B.2x-1C.2x≤5 D.-3x≥08.计算的结果是()A. B. C. D.9.若分式方程无解,则m的值为()A.﹣1 B.0 C.1 D.310.下列计算正确的是()A.a2+a3=a5 B.(a2)3=a6 C.a6÷a2=a3 D.2a×3a=6a二、填空题(每小题3分,共24分)11.规定一种新的运算:A★B=A×B-A÷B,如4★2=4×2-4÷2=6,则6★(-2)的值为______.12.16的平方根是.13.一组数据:3、5、8、x、6,若这组数据的极差为6,则x的值为__________.14.当代数式的值不大于时,的取值范围是_______________________.15.某单位定期对员工按照专业能力、工作业绩、考勤情况三方面进行考核(每项满分100分),三者权重之比为,小明经过考核后三项分数分别为90分,86分,83分,则小明的最后得分为_________分.16.已知,则的值为_______.17.比较大小:_________18.不等式组的解集为,则不等式的解集为__________三、解答题(共66分)19.(10分)问题情境:如图①,在直角三角形ABC中,∠BAC=90∘,AD⊥BC于点D,可知:∠BAD=∠C(不需要证明);(1)特例探究:如图②,∠MAN=90∘,射线AE在这个角的内部,点B.C在∠MAN的边AM、AN上,且AB=AC,CF⊥AE于点F,BD⊥AE于点D.证明:△ABD≌△CAF;(2)归纳证明:如图③,点B,C在∠MAN的边AM、AN上,点E,F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF;(3)拓展应用:如图④,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E.F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为18,求△ACF与△BDE的面积之和是多少?20.(6分)如图1,的边在直线上,,且的边也在直线上,边与边重合,且.(1)直接写出与所满足的数量关系:_________,与的位置关系:_______;(2)将沿直线向右平移到图2的位置时,交于点Q,连接,求证:;(3)将沿直线向右平移到图3的位置时,的延长线交的延长线于点Q,连接,试探究与的数量和位置关系?并说明理由.21.(6分)某中学八(1)班小明在综合实践课上剪了一个四边形ABCD,如图,连接AC,经测量AB=12,BC=9,CD=8,AD=17,∠B=90°.求证:△ACD是直角三角形.22.(8分)棱长分别为,两个正方体如图放置,点在上,且,一只蚂蚁如果要沿着长方体的表面从点爬到点,需要爬行的最短距离是________23.(8分)计算:(1)(2)(3)(4)解分式方程:24.(8分)如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.求证:△BDE是等腰三角形.25.(10分)如图,,,于点D,于点E,BE与CD相交于点O.(1)求证:;(2)求证;是等腰三角形;(3)试猜想直线OA与线段BC又怎样的位置关系,并说明理由.26.(10分)某校八年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,在△ABC中,∠ABC与∠ACB的平分线交于点P,∠A=64°,则∠BPC=;(2)如图2,△ABC的内角∠ACB的平分线与△ABC的外角∠ABD的平分线交于点E.其中∠A=α,求∠BEC.(用α表示∠BEC);(3)如图3,∠CBM、∠BCN为△ABC的外角,∠CBM、∠BCN的平分线交于点Q,请你写出∠BQC与∠A的数量关系,并证明.

参考答案一、选择题(每小题3分,共30分)1、B【解题分析】试题分析:利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.解:A、∵∠1=∠2,AD为公共边,若AB=AC,则△ABD≌△ACD(SAS);故A不符合题意;B、∵∠1=∠2,AD为公共边,若BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;故B符合题意;C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);故C不符合题意;D、∵∠1=∠2,AD为公共边,若∠BDA=∠CDA,则△ABD≌△ACD(ASA);故D不符合题意.故选B.考点:全等三角形的判定.2、C【分析】三角形三个内角之和是180°,三角形的一个角等于其它两个角的差,列出两个方程,即可求出答案.【题目详解】解:设三角形的三个角分别为:α、β、γ,则由题意得:,解得:α=90°

故这个三角形是直角三角形.

故选:C.【题目点拨】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.3、A【分析】设P点坐标为(x,y),由坐标的意义可知PC=x,PD=y,根据围成的矩形的周长为8,可得到x、y之间的关系式.【题目详解】如图,过点分别作轴,轴,垂足分别为、,设点坐标为,点在第一象限,,,矩形的周长为8,,,即该直线的函数表达式是,故选.【题目点拨】本题主要考查矩形的性质及一次函数图象上点的坐标特征,直线上任意一点的坐标都满足函数关系式y=kx+b.根据坐标的意义得出x、y之间的关系是解题的关键.4、B【分析】利用完全平方公式的结构特征得到关于m的方程,求解即可.【题目详解】解:∵是完全平方式,∴2(m-1)=±8解得m=5或m=-1.故选:B【题目点拨】本题考查了完全平方式,熟练掌握完全平方式的特点是解题的关键.5、D【分析】①大长方形的长为2a+b,宽为m+n,利用长方形的面积公式,表示即可;

②长方形的面积等于左边,中间及右边的长方形面积之和,表示即可;③长方形的面积等于上下两个长方形面积之和,表示即可;④长方形的面积由6个长方形的面积之和,表示即可.【题目详解】①(2a+b)(m+n),本选项正确;

②2a(m+n)+b(m+n),本选项正确;③m(2a+b)+n(2a+b),本选项正确;④2am+2an+bm+bn,本选项正确,则正确的有①②③④.故选D.【题目点拨】此题考查了整式乘法,灵活计算面积是解本题的关键.6、D【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【题目详解】A、4+2=6<7,不能组成三角形;

B、3+3=6,不能组成三角形;

C、5+2=7<8,不能组成三角形;

D、4+5=9>6,能组成三角形.

故选D.【题目点拨】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.7、C【解题分析】A.∵5+4>8不含未知数,故不是一元一次不等式;B.∵2x-1不含不等号,故不是一元一次不等式;C.2x-5≤1是一元一次不等式;D.∵-3x≥0的分母中含未知数,,故不是一元一次不等式;故选C.点睛:本题考查一元一次不等式的识别,注意理解一元一次不等式的三个特点:①不等式的两边都是整式;②只含1个未知数;③未知数的最高次数为1次.8、A【解题分析】根据同底数幂的乘法公式进行计算即可得解.【题目详解】根据同底数幂的乘法公式(m,n都是正整数)可知,故选:A.【题目点拨】本题主要考查了整式的乘法,熟练掌握同底数幂的乘法公式是解决本题的关键.9、A【分析】

【题目详解】两边同乘以(x+3)得:x+2=m,x=m-2,∵方程无解∴x+3=0,即m-2+3=0,∴m=-1,故选A.10、B【解题分析】根据合并同类项、幂的乘方与积的乘方、同底数幂的乘法及除法法则进行计算即可.【题目详解】A、错误,a1与a3不是同类项,不能合并;B、正确,(a1)3=a6,符合积的乘方法则;C、错误,应为a6÷a1=a4;D、错误,应为1a×3a=6a1.故选B.【题目点拨】本题考查了合并同类项,同底数的幂的乘法与除法,幂的乘方,单项式的乘法,熟练掌握运算性质是解题的关键.二、填空题(每小题3分,共24分)11、-9【分析】根据新公式,A、B分别相当于6和-2,代入公式计算即可.【题目详解】6★(-2)===-9【题目点拨】本题考查有理数的混合运算,熟练掌握计算法则是解题关键.12、±1.【题目详解】由(±1)2=16,可得16的平方根是±1.13、2或1【解题分析】根据极差的定义先分两种情况进行讨论,当x最大时或最小时分别进行求解即可.【题目详解】∵数据3、5、8、x、6的极差是6,∴当x最大时:x﹣3=6,解得:x=1;当x最小时,8﹣x=6,解得:x=2,∴x的值为2或1.故答案为:2或1.【题目点拨】本题考查了极差,掌握极差的定义是解题的关键;求极差的方法是用一组数据中的最大值减去最小值.14、【分析】根据题意,列出一元一次不等式,然后解不等式即可得出结论.【题目详解】解:由题意可得≤10≤20≤19解得故答案为:.【题目点拨】此题考查的是解一元一次不等式,掌握不等式的解法是解决此题的关键.15、82.2【分析】将三个方面考核后所得的分数分别乘上它们的权重,再相加,即可得到最后得分.【题目详解】解:小明的最后得分=27+43+1.2=82.2(分),

故答案为:82.2.【题目点拨】此题主要考查了加权平均数,关键是掌握加权平均数的计算方法.若n个数x1,x2,x3,…,xn的权分别是w1,w2,w3,…,wn,则叫做这n个数的加权平均数.16、24【解题分析】试题解析:故答案为17、<【分析】将两数平方后比较大小,可得答案.【题目详解】∵,,18<20∴<故填:<.【题目点拨】本题考查比较无理数的大小,无理数的比较常用平方法.18、【分析】根据题意先求出a和b的值,并代入不等式进而解出不等式即可.【题目详解】解:,解得,∵不等式组的解集为,∴,解得,将代入不等式即有,解得.故答案为:.【题目点拨】本题考查解一元一次不等式组以及解一元一次不等式,熟练掌握相关求解方法是解题的关键.三、解答题(共66分)19、(1)见解析;(2)见解析;(3)6.【解题分析】(1)求出∠BDA=∠AFC=90°,∠ABD=∠CAF,根据AAS证△ABD≌△CAF即可;(2)根据题意和三角形外角性质求出∠ABE=∠CAF,∠BAE=∠FCA,根据ASA证△BAE≌△CAF即可;(3)求出△ABD的面积,根据△ABE≌△CAF得出△ACF与△BDE的面积之和等于△ABD的面积,即可得出答案.【题目详解】(1)证明:如图②,∵CF⊥AE,BD⊥AE,∠MAN=90°,∴∠BDA=∠AFC=90°,∴∠ABD+∠BAD=90°,∠BAD+∠CAF=90°,∴∠ABD=∠CAF,在△ABD和△CAF中,∠ADB=∠CFA∴△ABD≌△CAF(AAS);(2)证明:如图③,∵∠1=∠2=∠BAC,∠1=∠BAE+∠ABE,∠BAC=∠BAE+∠CAF,∠2=∠FCA+∠CAF,∴∠ABE=∠CAF,∠BAE=∠FCA,在△BAE和△CAF中,∠ABE=∠CAF∴△BAE≌△CAF(ASA);(3)如图④,∵△ABC的面积为18,CD=2BD,∴△ABD的面积=1由(2)可得△BAE≌△CAF,即△BAE的面积=△ACF的面积,∴△ACF与△BDE的面积之和等于△BAE与△BDE的面积之和,即△ACF与△BDE的面积之和等于△ABD的面积6.【题目点拨】本题主要考查了全等三角形的性质和判定,三角形的面积,三角形的外角性质等知识点,具备较强的分析问题和解决问题的能力是关键,题目比较典型,证明过程有类似之处.20、(1)AB=AP

,AB⊥AP

;(2)证明见解析;(3)AP=BQ,AP⊥BQ,证明见解析.【分析】(1)根据等腰直角三角形的性质可得∠BAP=45°+45°=90°,根据垂直平分线的性质可得AB=AP;(2)要证BQ=AP,可以转化为证明Rt△BCQ≌Rt△ACP;(3)类比(2)的证明就可以得到,证明垂直时,延长QB交AP于点N,则∠PBN=∠CBQ,借助全等得到的角相等,得出∠APC+∠PBN=90°,进一步可得出结论..【题目详解】解:(1)∵AC⊥BC且AC=BC,

∴△ABC为等腰直角三角形,∠ACB=90°,

∴∠BAC=∠ABC=(180°-∠ACB)=45°,

∵,∠EFP=180°-∠ACB=90°,∴△EFP为等腰直角三角形,BC=AC=CP,∴∠PEF=45°,AB=AP,

∴∠BAP=45°+45°=90°,

∴AB=AP且AB⊥AP;

故答案为:AB=AP

,AB⊥AP

(2)证明:

∵EF=FP,EF⊥FP

∴∠EPF=45°.

∵AC⊥BC,

∴∠CQP=∠EPF=45°

∴CQ=CP

Rt△BCQ和Rt△ACP中,∴Rt△BCQ≌Rt△ACP

(SAS).

∴AP=BQ.

(3)AP=BQ,AP⊥BQ,理由如下:

∵EF=FP,EF⊥FP,

∴∠EPF=45°.

∴∠CPQ=∠EPF=45°

∵AC⊥BC

∴CQ=CP

Rt△BCQ和Rt△ACP中,

∴Rt△BCQ≌Rt△ACP

(SAS).

∴AP=BQ,∠BQC=∠APC,如图,延长QB交AP于点N,

则∠PBN=∠CBQ,在Rt△BCQ中,∠BQC+∠CBQ=90°,

∴∠APC+∠PBN=90°,

∴∠PNB=90°,

∴QB⊥AP.【题目点拨】本题是几何变换综合题,主要考查了等腰直角三角形的性质,垂直平分线的性质,全等三角形的判定和性质.能结合题意找到全等的三角形,并正确证明是解题关键.21、见解析【分析】先根据勾股定理求出AC的长,然后在△ACD中,由勾股定理的逆定理,即可证明△ACD为直角三角形.【题目详解】证明:∵∠B=90°,AB=12,BC=9,∴AC2=AB2+BC2=144+81=225,∴AC=15,又∵AC2+CD2=225+64=289,AD2=289,∴AC2+CD2=AD2,∴△ACD是直角三角形.【题目点拨】此题主要考查了勾股定理以及勾股定理的逆定理,正确得出AC的长是解题的关键.22、【分析】根据两点之间直线最短的定理,将正方体展开即可解题.【题目详解】将两个立方体平面展开,将面以为轴向上展开,连接A、P两点,得到三角形APE,AE=4+5=9,EP=4+1=5,AP==cm.【题目点拨】本题考查空间思维能力.23、(1);(2);(3)0;(4)是该方程的根.【分析】(1)适当变形后,利用平方差公式()计算即可;(2)首先计算积的乘方()和幂的乘方(),然后从左到右依次计算即可;(3)分别化简二次根式、绝对值,计算零指数幂()和负指数幂((a≠0,n为整数)),然后进行二次根式的加减运算;(4)去分母后将分式方程化为整式方程,然后求解整式方程,验根,写出答案.【题目详解】解:(1)原式;(2)原式===;(3)原式===0;(4)去分母得:,去括号得:,移项,合并同类项得:,解得.经检验是该方程的根.【题目点拨】本题考查平方差公式,整式的乘除混合运算,实数的混合运算,解分式方程.(1)中熟记平方差公式并能灵活运用是解题关键;(2)中需注意在本题计算整式的乘除混合运算时,从左到右依次运算;(3)中需注意在化简绝对值后,要先将绝对值化为普通括号,以防出现符号错误;(4)中注意分式方程一定要验根.24、证明见解析.【解题分析】试题分析:直接利用平行线的性质得出∠1=∠3,进而利用角平分线的定义结合互余的性质得出∠B=∠BDE,即可得出答案.试题解析:∵DE∥AC,∴∠1=∠3,∵AD平分∠BAC,∴∠1=∠2,∴∠2=∠3,∵AD⊥BD,∴∠2+∠B=90°,∠3+∠BDE=90°,∴∠B=∠BDE,∴△BDE是等腰三角形.考点:等腰三角形的判定;平行线的性质.25、(1)见解析;(2)见解析;(3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论