黑龙江省哈尔滨南岗区五校联考2024届八年级数学第一学期期末学业质量监测试题含解析_第1页
黑龙江省哈尔滨南岗区五校联考2024届八年级数学第一学期期末学业质量监测试题含解析_第2页
黑龙江省哈尔滨南岗区五校联考2024届八年级数学第一学期期末学业质量监测试题含解析_第3页
黑龙江省哈尔滨南岗区五校联考2024届八年级数学第一学期期末学业质量监测试题含解析_第4页
黑龙江省哈尔滨南岗区五校联考2024届八年级数学第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省哈尔滨南岗区五校联考2024届八年级数学第一学期期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.在Rt△ABC中,以两直角边为边长的正方形面积如图所示,则AB的长为()A.49 B. C.3 D.72.如图,在等腰ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的垂直平分线交于点O、点C沿EF折叠后与点O重合,则∠CEF的度数是()A.60° B.55° C.50° D.45°3.8的平方根为()A.2 B.-2 C. D.4.若,则的值是A. B. C. D.5.学校开展为贫困地区捐书活动,以下是5名同学捐书的册数:2,2,x,4,1.已知这组数据的平均数是4,则这组数据的中位数和众数分别是()A.2和2 B.4和2 C.2和3 D.3和26.9的算术平方根是()A.3 B.-3 C. D.以上都对7.如图,A、B是两个居民小区,快递公司准备在公路l上选取点P处建一个服务中心,使PA+PB最短.下面四种选址方案符合要求的是()A. B.C. D.8.如图,△ABC中,∠C=90°,∠A=30°,AB=12,则BC=()A.6 B.6 C.6 D.129.以不在同一直线上的三个点为顶点作平行四边形最多能作()A.4个 B.3个 C.2个 D.1个10.为确保信息安全,信息需加密传输,发送方将明文加密后传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a,b对应的密文为a+2b,2a-b,例如:明文1,2对应的密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是()A.3,-1 B.1,-3 C.-3,1 D.-1,311.分式有意义,则x的取值范围是()A. B. C. D.一切实数12.如图,∠ACB=900,AC=BC,BE⊥CE,AD⊥CE于D,AD=2.5cm,DE=1.7cm,则BE=()A.1cm B.0.8cm C.4.2cm D.1.5cm二、填空题(每题4分,共24分)13.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为,较短直角边长为,若,大正方形的面积为13,则小正方形的面积为________.14.如图,已知的面积为,平分,且于点,则的面积是____________.15.一个多边形的内角和是它的外角和的5倍,则这个多边形的边数为____________.16.已知m+2n+2=0,则2m•4n的值为_____.17.在Rt△ABC中,∠ACB=90°,D为AB上的中点,若CD=5cm,则AB=_____________cm.18.在函数y=2x+1中,自变量三、解答题(共78分)19.(8分)如图所示,在平面直角坐标系中,的三个顶点坐标为,,.在图中作出先向右平移4个单位再向下平移1个单位长的图形,再作出关于轴对称的图形,并写出点、的坐标.20.(8分)如图,已知D为BC的中点,DE⊥AB,DF⊥AC,点E、F为垂足,且BE=CF.求证:△ABC是等腰三角形.21.(8分)如图,边长分别为a,b的两个正方形并排放在一起,请计算图中阴影部分面积,并求出当a+b=16,ab=60时阴影部分的面积.22.(10分)用配方法解方程:.23.(10分)在中,,将绕点A顺时针旋转到的位置,点E在斜边AB上,连结BD,过点D作于点F.(1)如图1,若点F与点A重合.①求证:;②若,求出;(2)若,如图2,当点F在线段CA的延长线上时,判断线段AF与线段AB的数量关系.并说明理由.24.(10分)(1)在中,,(如图1),与有怎样的数量关系?试证明你的结论.(2)图2,在四边形中,相于点,,,,,求长.25.(12分)为响应低碳号召,张老师上班的交通工具由自驾车改为骑自行车,张老师家距学校15千米,因为自驾车的速度是自行车速度的3倍,所以张老师每天比原来早出发小时,才能按原来时间到校,张老师骑自行车每小时走多少千米?26.如图1,在平面直角坐标系中,O为坐标原点,点A(8,0).动点P从A出发以每秒2个单位长度的速度沿线段AO向终点O运动,同时动点Q从O出发以相同速度沿y轴正半轴运动,点P到达点O,两点同时停止运动,设运动时间为t.(1)当∠OPQ=45°时,请求出运动时间t;(2)如图2,以PQ为斜边在第一象限作等腰Rt△PQM,设M点坐标为(m,n),请探究m与n的数量关系并说明理由.

参考答案一、选择题(每题4分,共48分)1、D【分析】根据勾股定理可知:以斜边为边长的正方形的面积等于以两条直角边为边长的正方形的面积和,据此求解即可.【题目详解】解:∵以直角边为边长的两个正方形的面积为35和14,∴AB1=AC1+BC1=35+14=49,∴AB=7(负值舍去),故选:D.【题目点拨】本题考查勾股定理的实际应用,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.2、C【分析】连接OB,OC,先求出∠BAO=25°,进而求出∠OBC=40°,求出∠COE=∠OCB=40°,最后根据等腰三角形的性质,问题即可解决.【题目详解】如图,连接OB,∵∠BAC=50°,AO为∠BAC的平分线,∴∠BAO=∠BAC=12×50°=25°.又∵AB=AC,∴∠ABC=∠ACB=65°.∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=25°,∴∠OBC=∠ABC−∠ABO=65°−25°=40°.∵AO为∠BAC的平分线,AB=AC,∴直线AO垂直平分BC,∴OB=OC,∴∠OCB=∠OBC=40°,∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE.∴∠COE=∠OCB=40°;

在△OCE中,∠OEC=180°−∠COE−∠OCB=180°−40°−40°=100°∴∠CEF=∠CEO=50°.故选C.【题目点拨】本题考查了等腰三角形的性质的运用、垂直平分线性质的运用、折叠的性质,解答时运用等腰三角形的性质和垂直平分线的性质是解答的关键.3、C【解题分析】直接根据平方根的定义求解即可.【题目详解】解:∵,∴8的平方根为,故答案为:C.【题目点拨】本题考查了平方根的概念,牢记平方根的概念是解题的关键.4、C【解题分析】∵,∴b=a,c=2a,则原式.故选C.5、D【解题分析】试题分析:根据平均数的含义得:=4,所以x=3;将这组数据从小到大的顺序排列(2,2,3,4,1),处于中间位置的数是3,那么这组数据的中位数是3;在这一组数据中2是出现次数最多的,故众数是2.故选D.考点:中位数;算术平均数;众数6、A【分析】根据算术平方根的定义解答即可.【题目详解】∵,∴9的算术平方根是3,故选:A.【题目点拨】此题考查算术平方根的定义:如果一个正数的平方等于a,那么这个正数即是a的算术平方根,熟记定义是解题的关键.7、A【分析】根据轴对称的性质和线段的性质即可得到结论.【题目详解】解:根据题意得,在公路l上选取点P,使PA+PB最短.则选项A符合要求,故选:A.【题目点拨】本题考查轴对称的性质的运用,最短路线问题数学模式的运用,也考查学生的作图能力,运用数学知识解决实际问题的能力.8、A【题目详解】∵30°的角所对的直角边等于斜边的一半,,故选A.9、B【解题分析】连接不在同一直线上的三点,得到一个三角形,分别以三角形的三边为对角线,用作图的方法,可得出选项.【题目详解】如图,以点A,B,C能做三个平行四边形:分别是▱ABCD,▱ABFC,▱AEBC.故选B.10、A【分析】根据题意可得方程组,再解方程组即可.【题目详解】由题意得:,解得:,故选A.11、B【解题分析】试题分析:分母为零,分式无意义;分母不为零,分式有意义.解:由分式有意义,得x﹣1≠1.解得x≠1,故选B.考点:分式有意义的条件.12、B【题目详解】解:∵BE⊥CE,AD⊥CE,∴∠BCE=∠CAD,在△ACD和△CBE中,∴△ACD≌△CBE(AAS),∴AD=CE=2.5cm,BE=CD,∵CD=CE−DE=2.5−1.7=0.8cm,∴BE=0.8cm.故选B.二、填空题(每题4分,共24分)13、1【分析】观察图形可知,小正方形的面积=大正方形的面积-4个直角三角形的面积,利用已知(a+b)2=21,大正方形的面积为13,可以得出直角三角形的面积,进而求出答案.【题目详解】解:如图所示:由题意可知:每个直角三角形面积为,则四个直角三角形面积为:2ab;大正方形面积为a2+b2=13;小正方形面积为13-2ab∵(a+b)2=21,∴a2+2ab+b2=21,∵大正方形的面积为13,2ab=21-13=8,∴小正方形的面积为13-8=1.故答案为:1.【题目点拨】此题主要考查了勾股定理的应用,熟练应用勾股定理理解大正方形面积为a2+b2=13是解题关键.14、9【分析】延长AP交BC于D点,可证△APB≌△DPB,可得AP=PD,△APC的面积等于△CPD的面积,利用面积的加减可得△BPC的面积是△ABC面积的一半.【题目详解】延长AP交BC于D点,∵平分,且∴∠APB=∠DPB,∠APB=∠BPD=90°又BP=BP∴△APB≌△DPB(ASA)∴AP=PD,S△APB=S△BPD∴S△APC=S△PCD∴S△APB+S△APC=S△BPD+S△PCD∴S△BPC==9故答案为:9【题目点拨】本题考查的是三角形的全等及三角形的面积,掌握等底等高的三角形面积相等是关键.15、1【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解即可.【题目详解】设这个多边形是n边形,根据题意得,(n-2)•180°=5×360°,解得n=1.故答案为1.【题目点拨】本题考查了多边形的内角和公式与外角和定理,多边形的外角和与边数无关,任何多边形的外角和都是360°.16、【解题分析】把2m•4n转化成2m•22n的形式,根据同底数幂乘法法则可得2m•22n=2m+2n,把m+2n=-2代入求值即可.【题目详解】∵m+2n+2=0,∴m+2n=-2,∴2m•4n=2m•22n=2m+2n=2-2=.故答案为【题目点拨】本题考查了幂的乘方和同底数幂乘法,掌握幂的乘方和同底数幂乘法的运算法则是解题关键.17、1【解题分析】根据直角三角形斜边上的中线等于斜边的一半解答.【题目详解】∵在Rt△ABC中,∠ACB=90°,D是AB的中点,∴线段CD是斜边AB上的中线;又∵CD=5cm,∴AB=2CD=1cm.故答案是:1.【题目点拨】本题考查了直角三角形斜边上的中线.直角三角形斜边上的中线等于斜边的一半.18、x【题目详解】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数可知,要使2x+1三、解答题(共78分)19、见解析,,【分析】先找出先向右平移4个单位对应的图形,再作出关于轴对称的图形,然后顺次连接各点后直接写出、的坐标即可;【题目详解】解:如图所示,、;【题目点拨】本题主要考查了作图-轴对称图形,掌握作图-轴对称图形是解题的关键.20、见解析.【分析】由于DE⊥AB,DF⊥AC,那么∠DEB=∠DFC=90°,根据D是BC中点可得BD=CD,而BE=CF,根据HL可证Rt△BED≌Rt△CFD,于是∠B=∠C,进而可证△ABC等腰三角形;【题目详解】解:∵点D是BC边上的中点,

∴BD=CD,

∵DE⊥AB于E,DF⊥AC于F,

∴∠DEB=∠DFC=90°,

在Rt△BED和Rt△CFD中,∴Rt△BED≌Rt△CFD(HL),

∴∠B=∠C,

∴AB=AC,

∴△ABC等腰三角形;【题目点拨】本题考查了全等三角形的判定和性质、等腰三角形的判定,解题的关键是证明Rt△BED≌Rt△CFD.21、1【解题分析】由题意表示出AB,AD,CG、FG,进而表示出BG,阴影部分面积=正方形ABCD+正方形ECGF面积-三角形ABD面积-三角形FBG面积,求出即可.【题目详解】如图,由题意得:AB=AD=a,CG=FG=b,BG=BC+CG=a+b,∴S阴影=S正方形ABCD+S正方形ECGF-S直角△ABD-S直角△FBG=AB•AD+CG•FG-AB•AD-BG•FG=a2+b2-a2-(a+b)b=(a2+b2-ab)=[(a+b)2-3ab],∵a+b=16,ab=60,∴S阴影=×(162-3×60)=1.【题目点拨】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.22、或【分析】根据配方法的步骤先两边都除以2,再移项,再配方,最后开方即可得出答案.【题目详解】原方程变形为:配方得即或所以原方程得解为或【题目点拨】本题考查了配方法解一元二次方程,关键是能正确配方,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.23、(1)①证明见解析;②;(2),理由见解析.【解题分析】(1)①由旋转得到∠BAC=∠BAD,而DF⊥AC,从而得出∠ABC=45°,最后判断出△ABC是等腰直角三角形;②由旋转和勾股定理可得,即可求得EB,在中,由勾股定理可求;(2)由旋转得到,再根据,从而求出∴=60°,最后判定△AFD≌△AED即可得证.【题目详解】解:(1)①由旋转得:,∵∴∴∵∴∴∴;②由①:由旋转:,在中,∴∴在中,,∴;(2),理由如下:由旋转知:∴∵∴∴∴又由旋转知:∴∴∴是等边三角形∵∴在和中,,∴∴,∴.【题目点拨】此题是几何变换综合题,主要考查了等腰直角三角形的性质和判定,全等三角形的性质和判定,旋转的性质,解本题的关键是熟练掌握旋转的性质.24、(1)AB=2BC,证明见解析;(2)-1.【分析】(1)取AB的中点D,连接DC,得AD=BD=CD,再证明△DBC是等边三角形得BD=BC,从而可证明AB=2BC;(2)过点A作AF⊥BD于点F,先确定∠2及∠3的度数,在Rt△AFB中求出AF,BF;Rt△AEF中,求出EF,AE,在Rt△ABD中求出DB,继而得出DE.【题目详解】(1)AB=2BC证明:取AB的中点D,连接DC,∵∠ACB=90°,CD为斜边AB上的中线∴AD=BD=CD∴∠A=∠ACD=30°,∠B=∠BCD∴∠ADC=180°-∠A-∠ACD=120°∴∠B=∠BCD=∠ADC=60°∴△DBC是等边三角形∴BD=BC∴AB=2BD=2BC即AB=2BC(2)过点A作AF⊥BD于点F,∵∠CDB=90°,∠1=30°,∴∠2=∠3=60°,在△AFB中,∠AFB=90°,∵∠4=45°,AB=,∴AF=BF=,在Rt△AEF中,∠AFE=90°,∴EF=1,AE=2,在△ABD中,∠DAB=90°,AB=,∴DB=2,∴DE=DB-BF-EF=-1.【题目点拨】本题考查了勾股定理的知识,解答本题的关键是作辅助线构造特殊三角形.25、张老师骑自

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论