




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省沂水县联考八年级数学第一学期期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列图形中,不是运用三角形的稳定性的是()A. B. C. D.2.如图,在等边中,是边上一点,连接,将绕点逆时针旋转得到,连接,若,,则有以下四个结论:①是等边三角形;②;③的周长是10;④.其中正确结论的序号是()A.②③④ B.①③④ C.①②④ D.①②③3.如图,已知E,B,F,C四点在一条直线上,,,添加以下条件之一,仍不能证明≌的是A. B. C. D.4.图①是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中的边长为6的直角边分别向外延长一倍,得到图②所示的“数学风车”,则这个风车的外围周长是(
)A.51 B.49 C.76 D.无法确定5.为积极响应南充市创建“全国卫生城市”的号召,某校1500名学生参加了卫生知识竞赛,成绩记为A、B、C、D四等.从中随机抽取了部分学生成绩进行统计,绘制成如图所示的两幅不完整的统计图,根据图中信息,以下说法不正确的是()A.样本容量是200B.D等所在扇形的圆心角为15°C.样本中C等所占百分比是10%D.估计全校学生成绩为A等的大约有900人6.下列图形中,不是轴对称图形的是()A. B. C. D.7.某小组长统计组内1人一天在课堂上的发言次数分别为3,3,0,4,1.关于这组数据,下列说法错误的是()A.众数是3 B.中位数是0 C.平均数3 D.方差是2.88.500米口径球面射电望远镜,简称,是世界上最大的单口径球面射电望远镜,被誉为“中国天眼”.望远镜首次发现的毫秒脉冲星得到国际认证,新发现的脉冲星自转周期为0.00519秒,是至今发现的射电流量最弱的高能毫秒脉冲星之一.将0.00519用科学记数法表示应为()A. B. C. D.9.如图,已知点A(1,-1),B(2,3),点P为x轴上一点,当|PA-PB|的值最大时,点P的坐标为()A.(-1,0) B.(,0) C.(,0) D.(1,0)10.等腰三角形的一个内角为50°,则另外两个角的度数分别为()A.65°,65° B.50°,80° C.65°,65°或50°,80° D.50°,50°11.将下列长度的三根木棒首尾顺次连接,不能组成直角三角形的是()A.7、24、25 B.5、12、13 C.3、4、5 D.2、3、12.如图,在锐角三角形中,,的平分线交于点,、分别是和上的动点,则的最小值是()A.1 B. C.2 D.二、填空题(每题4分,共24分)13.如图,等腰△ABC中,AB=AC,∠BAC=120°,AE⊥AC,DE垂直平分AB于D,若DE=2,则EC=_____.14.已知点A(−2,0),点P是直线y=34x上的一个动点,当以A,O,P为顶点的三角形面积是3时,点P15.如图,AD、BE是△ABC的两条中线,则S△EDC:S△ABD=______.16.如图,四边形ABCD,已知∠A=90°,AB=3,BC=13,CD=12,DA=4,则四边形ABCD的面积为___________.17.如图,在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=8,则△ABC的周长为______.18.已知一个角的补角是它余角的3倍,则这个角的度数为_____.三、解答题(共78分)19.(8分)如图所示,在△ABC中,D是BC边上一点∠1=∠2,∠3=∠4,∠BAC=69°,求∠DAC的度数.20.(8分)如图,在▱ABCD中,E、F分别是BC、AD边上的点,且∠1=∠1.求证:四边形AECF是平行四边形.21.(8分)“绿水青山就是金山银山”,随着生活水平的提高人们对饮水品质的需求越来越高,岳阳市槐荫公司根据市场需求代理,两种型号的净水器,每台型净水器比每台型净水器进价多元,用万元购进型净水器与用万元购进型净水器的数量相等(1)求每台型、型净水器的进价各是多少元?(2)槐荫公司计划购进,两种型号的共台进行试销,,购买资金不超过万元.试求最多可以购买型净水器多少台?22.(10分)雾霾天气持续笼罩我国大部分地区,困扰着广大市民的生活,口罩市场出现热销,小明的爸爸用12000元购进甲、乙两种型号的口罩在自家商店销售,销售完后共获利2700元,进价和售价如表:(1)小明爸爸的商店购进甲、乙两种型号口罩各多少袋?(2)该商店第二次以原价购进甲、乙两种型号口罩,购进甲种型号口罩袋数不变,而购进乙种型号口罩袋数是第一次的2倍,甲种口罩按原售价出售,而效果更好的乙种口罩打折让利销售,若两种型号的口罩全部售完,要使第二次销售活动获利不少于2460元,每袋乙种型号的口罩最多打几折?23.(10分)如图所示,在等腰三角形ABC中,AB=AC,AD是△ABC的角平分线,E是AC延长线上一点.且CE=CD,AD=DE.(1)求证:ABC是等边三角形;(2)如果把AD改为ABC的中线或高、其他条件不变),请判断(1)中结论是否依然成立?(不要求证明)24.(10分)梧州市特产批发市场有龟苓膏粉批发,其中A品牌的批发价是每包20元,B品牌的批发价是每包25元,小王需购买A,B两种品牌的龟苓膏粉共1000包.(1)若小王按需购买A,B两种品牌龟苓膏粉共用22000元,则各购买多少包?(2)凭会员卡在此批发市场购买商品可以获得8折优惠,会员卡费用为500元.若小王购买会员卡并用此卡按需购买1000包龟苓膏粉,共用了y元,设A品牌买了x包,请求出y与x之间的函数关系式;(3)在(2)中,小王共用了20000元,他计划在网店包邮销售这批龟苓膏粉,每包龟苓膏粉小王需支付邮费8元,若每包销售价格A品牌比B品牌少5元,请你帮他计算,A品牌的龟苓膏粉每包定价不低于多少元时才不亏本?(运算结果取整数)25.(12分)已知关于x的一元二次方程x2+(k﹣1)x+k﹣2=0(1)求证:方程总有两个实数根;(2)若方程有一根为正数,求实数k的取值范围.26.计算题(1)(2)
参考答案一、选择题(每题4分,共48分)1、C【解题分析】分析:利用三角形的稳定性解答即可.详解:对于A、B、D选项,都含有三角形,故利用了三角形的稳定性;而C选项中,拉闸门是用到了四边形的不稳定性.故选C.点睛:本题主要考查了三角形的稳定性,需理解稳定性在实际生活中的应用;首先,明确能体现出三角形的稳定性,则说明物体中必然存在三角形;2、D【分析】先由△BCD绕点B逆时针旋转60°,得到△BAE,可知:BD=BE,∠DBE=60°,则可判断△BDE是等边三角形;根据等边三角形的性质得BA=BC,∠ABC=∠C=∠BAC=60°,再根据旋转的性质得到∠BAE=∠BCD=60°,从而得∠BAE=∠ABC=60°,根据平行线的判定方法即可得到AE∥BC;根据等边三角形的性质得∠BDE=60°,而∠BDC>60°,则可判断∠ADE≠∠BDC;由△BDE是等边三角形得到DE=BD=4,再利用△BCD绕点B逆时针旋转60°,得到△BAE,则AE=CD,△AED的周长=AE+AD+DE=CD+AD+DE=AC+BD=BC+BD=1.【题目详解】∵△BCD绕点B逆时针旋转60°,得到△BAE,∴BD=BE,∠DBE=60°,∴△BDE是等边三角形,∴①正确;∵△ABC为等边三角形,∴BA=BC,∠ABC=∠C=∠BAC=60°,∵△BCD绕点B逆时针旋转60°,得到△BAE,∴∠BAE=∠BCD=60°,∴∠BAE=∠ABC,∴AE∥BC,∴②正确;∵△BDE是等边三角形,∴DE=BD=4,∵△BCD绕点B逆时针旋转60°,得到△BAE,∴AE=CD,∴△AED的周长=AE+AD+DE=CD+AD+DE=AC+BD=BC+BD=6+4=1,∴③正确;∵△BDE是等边三角形,∴∠BDE=60°,∵∠BDC=∠BAC+∠ABD>60°,∴∠ADE=180°-∠BDE-∠BDC<60°,∴∠ADE≠∠BDC,∴④错误.故选D.【题目点拨】本题主要考查旋转得性质,等边三角形的判定和性质定理,掌握旋转的性质以及等边三角形的性质定理,是解题的关键.3、B【分析】由EB=CF,可得出EF=BC,又有∠A=∠D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC≌△DEF,那么添加的条件与原来的条件可形成SSA,就不能证明△ABC≌△DEF了.【题目详解】添加,根据AAS能证明≌,故A选项不符合题意.B.添加与原条件满足SSA,不能证明≌,故B选项符合题意;C.添加,可得,根据AAS能证明≌,故C选项不符合题意;D.添加,可得,根据AAS能证明≌,故D选项不符合题意,故选B.【题目点拨】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4、C【解题分析】试题解析:依题意得,设“数学风车”中的四个直角三角形的斜边长为x,则x2=122+52=169,解得x=1.故“数学风车”的周长是:(1+6)×4=2.故选C.5、B【题目详解】抽取的样本容量为50÷25%=1.所以C等所占的百分比是20÷1×100%=10%.D等所占的百分比是1-60%-25%-10%=5%.因此D等所在扇形的圆心角为360°×5%=18°.全校学生成绩为A等的大约有1500×60%=900(人).故选B.6、A【分析】根据轴对称图形概念进行解答即可.【题目详解】解:A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意;故选:A.【题目点拨】本题考查了轴对称图形的概念,判断轴对称图形的关键是寻找对称轴;轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.7、B【分析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可【题目详解】A.3,3,0,4,1众数是3,此选项正确;B.
0,3,3,4,1中位数是3,此选项错误;C.
平均数=(3+3+4+1)÷1=3,此选项正确;D.方差S2=[(3−3)2+(3−3)2+(3−0)2+(3−4)2+(3−1)2]=2.8,此选项正确;故选B【题目点拨】本题考查了方差,加权平均数,中位数,众数,熟练掌握他们的概念是解决问题的关键8、B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】解:0.00519=5.19×10-1.
故选:B.【题目点拨】此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9、B【分析】由题意作A关于x轴对称点C,连接BC并延长,BC的延长线与x轴的交点即为所求的P点;首先利用待定系数法即可求得直线BC的解析式,继而求得点P的坐标.【题目详解】解:作A关于x轴对称点C,连接BC并延长交x轴于点P,∵A(1,-1),∴C的坐标为(1,1),连接BC,设直线BC的解析式为:y=kx+b,∴,解得,∴直线BC的解析式为:y=2x-1,当y=0时,x=,∴点P的坐标为:(,0),∵当B,C,P不共线时,根据三角形三边的关系可得:|PA-PB|=|PC-PB|<BC,∴此时|PA-PB|=|PC-PB|=BC取得最大值.故选:B.【题目点拨】本题考查轴对称、待定系数法求一次函数的解析式以及点与一次函数的关系.此题难度较大,解题的关键是找到P点,注意数形结合思想与方程思想的应用.10、C【分析】根据分类讨论已知角是顶角还是底角,进行分析,从而得到答案【题目详解】解:当已知角是底角时,另外两个角分别为:50°,80°;
当已知角是顶角时,另外两个角分别是:65°,65°.
故应选C.11、D【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.进行计算可解答.【题目详解】A、72+24=252,符合勾股定理的逆定理,故能组成直角三角形;B、52+122=132,符合勾股定理的逆定理,故能组成直角三角形;C、32+42=52,符合勾股定理的逆定理,故能组成直角三角形;D、22+32≠()2,不符合勾股定理的逆定理,故不能组成直角三角形.故选:D.【题目点拨】此题考查勾股定理的逆定理,解题关键在于在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.12、B【分析】通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.【题目详解】解:如图,在AC上截取AE=AN,连接BE,
∵∠BAC的平分线交BC于点D,
∴∠EAM=∠NAM,
在△AME与△AMN中,∴△AME≌△AMN(SAS),
∴ME=MN.
∴BM+MN=BM+ME≥BE,
当BE是点B到直线AC的距离时,BE⊥AC,此时BM+MN有最小值,
∵,∠BAC=45°,此时△ABE为等腰直角三角形,
∴BE=,即BE取最小值为,
∴BM+MN的最小值是.
故选:B.【题目点拨】本题考察了最值问题,能够通过构造全等三角形,把BM+MN进行转化,是解题的关键.二、填空题(每题4分,共24分)13、1【分析】由DE垂直平分AB,可得AE=BE,由△ABC中,AB=AC,∠BAC=120°,可求得∠B=∠C=∠EAB=30°,继而求得AE的长,继而求得答案.【题目详解】∵△ABC中,AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵DE垂直平分AB,∴AE=BE,∴∠EAB=∠B=30°,∴AE=BE=2DE=2×2=4,∴∠EAC=∠BAC-∠BAE=90°,∴CE=2AE=1,故答案为1.【题目点拨】此题考查了线段垂直平分线的性质以及含30°角的直角三角形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.14、(4,3)或(-4,-3)【解题分析】依据点P是直线y=34x上的一个动点,可设P(x,34x),再根据以A,O,P为顶点的三角形面积是3,即可得到x的值,进而得出点【题目详解】∵点P是直线y=34x上的一个动点,
∴可设P(x,34x),
∵以A,O,P为顶点的三角形面积是3,
∴12×AO×|34x|=3,
即12×2×|34x|=3,
解得x=±4,
∴P(4,3)或(-4,-3),
故答案是:(4,【题目点拨】考查了一次函数图象上点的坐标特征,解题时注意:直线上任意一点的坐标都满足函数关系式y=kx+b.15、1:1.【分析】根据三角形中位线定理得到DE∥AB,DEAB,根据相似三角形的性质得到()1,根据三角形的面积公式计算,得到答案.【题目详解】∵AD、BE是△ABC的两条中线,∴DE∥AB,DEAB,∴△EDC∽△ABC,∴()1,∵AD是△ABC的中线,∴,∴S△EDC:S△ABD=1:1.故答案为:1:1.【题目点拨】本题考查的是三角形中位线定理、相似三角形的判定和性质、三角形的面积计算,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.16、36【分析】连接BD,先根据勾股定理求出BD的长,再根据勾股定理的逆定理判断出△BCD的形状,根据=即可得出结论.【题目详解】连接BD.∵∠A=90°,AB=3,DA=4,∴BD==5在△BCD中,∵BD=5,CD=12,BC=13,,即,∴△BCD是直角三角形,∴==,故答案为:36.【题目点拨】此题考查勾股定理的逆定理、勾股定理,解题关键在于作辅助线BD.17、1【分析】利用基本作图得到MN垂直平分AB,则DA=DB,利用等线段代换得到BC+AC=10,然后计算△ABC的周长.【题目详解】由作法得MN垂直平分AB,∴DA=DB,∵△ADC的周长为10,∴DA+CD+AC=10,∴DB+CD+AC=10,即BC+AC=10,∴△ABC的周长=BC+AC+AB=10+8=1.故答案为1.【题目点拨】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线),也考查了线段垂直平分线的性质.18、45°【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【题目详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°-α=3(90°-α),解得α=45°.故答案为:45°.【题目点拨】本题考查了余角与补角,能分别用这个角表示出它的余角与补角是解题的关键.三、解答题(共78分)19、32°【分析】设∠1=∠2=x,根据三角形外角的性质可得∠4=∠3=2x,在△ABC中,根据三角形的内角和定理可得方程2x+x+69°=180°,解方程求得x的值,即可求得∠4、∠3的度数,在△ADC中,根据三角形的内角和定理求得∠DAC的度数即可.【题目详解】设∠1=∠2=x∴∠4=∠3=∠1+∠2=2x,在△ABC中,∠4+∠2+∠BAC=180°,∴2x+x+69°=180°解得x=37.即∠1=∠2=37°,∠4=∠3=37°×2=74°.在△ADC中,∠4+∠3+∠DAC=180°∴∠DAC=180º-∠4-∠3=180°-74°-74°=32º.【题目点拨】本题考查了三角形的内角和定理及三角形外角的性质,熟知三角形的内角和定理及三角形外角的性质是解题的关键.20、详见解析【解题分析】由条件可证明AE∥FC,结合平行四边形的性质可证明四边形AECF是平行四边形.【题目详解】证明:∵四边形ABCD为平行四边形,∴AD∥BC,∴∠1=∠EAF,∵∠1=∠1,∴∠EAF=∠1,∴AE∥CF,∴四边形AECF是平行四边形.【题目点拨】本题主要考查平行四边形的性质和判定,利用平行四边形的性质证得AE∥CF是解题的关键.21、(1)A型净水器每台的进价为2000元,B型净水器每台的进价为1800元;(2)最多可以购买A型净水器40台.【分析】(1)设A型净水器每台的进价为元,则B型净水器每台的进价为(-200)元,根据数量=总价单价,结合用5万元购进A型净水器与用4.5万元购进B型净水器的数量相等,即可得出关于的分式方程,解方程检验即可.(2)设购买A型净水器台,则购买B型净水器为(50-)台,根据购买资金=A型净水器的进价购买数量+B型净水器的进价购买数量不超过9.8万元即可得出关于的一元一次不等式,解之即可得出的取值范围,也就得出最多可购买A型净水器的台数.【题目详解】解:(1)设A型净水器每台的进价为元,则B型净水器每台的进价为(-200)元,由题意,得解得=2000经检验,=2000是分式方程得解∴-200=1800答:A型净水器每台的进价为2000元,B型净水器每台的进价为1800元.(2)设购买A型净水器台,则购买B型净水器为(50-)台,由题意,得2000+1800(50-)≤98000解得≤40答:最多可以购买A型净水器40台.故答案为(1)A型净水器每台的进价为2000元,B型净水器每台的进价为1800元;(2)最多可以购买A型净水器40台.【题目点拨】本题考查了分式方程的应用,一元一次不等式的应用.解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系列出一元一次不等式方程.22、(1)购进甲型号口罩300袋,购进乙种型号口罩200袋;(2)每袋乙种型号的口罩最多打9折【解题分析】(1)设小明爸爸的商店购进甲种型号口罩x袋,乙种型号口罩y袋,根据“小明的爸爸用12000元购进甲、乙两种型号的口罩,销售完后共获利2700元”列出方程组,解方程组即可求解;(2)设每袋乙种型号的口罩打m折,根据“两种型号的口罩全部售完,要使第二次销售活动获利不少于2460元”列出不等式,解不等式即可求解.【题目详解】(1)设小明爸爸的商店购进甲种型号口罩x袋,乙种型号口罩y袋,根据题意可得,,解得:,答:该商店购进甲种型号口罩300袋,乙种型号口罩200袋;(2)设每袋乙种型号的口罩打m折,由题意可得,300×5+400(0.1m×36-30)≥2460,解得:m≥9,答:每袋乙种型号的口罩最多打9折.【题目点拨】本题考查了二元一次方程组的应用及一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的数量关系,列出方程组或不等式求解.23、(1)见解析;(2)成立【分析】(1)根据等腰三角形的性质可得,角平分线AD同时也是三角形ABC底边BC的高,即∠ADC=90°.再加上已知条件可推出∠DAC=30°,即可知三角形ABC是等边三角形.(2)在等腰三角形ABC中,如果其他条件不变,则AD同时是角平分线、中线及高,所以(1)中结论仍然成立.【题目详解】(1)证明:∵CD=CE,∴∠E=∠CDE,
∴∠ACB=2∠E.
又∵AD=DE,∴∠E=∠DAC,
∵AD是△ABC的角平分线,
∴∠BAC=2∠DAC=2∠E,
∴∠ACB=∠BAC,∴BA=BC.
又∵AB=AC,∴AB=BC=AC.
∴△ABC是等边三角形.
(2)解:当AD为△ABC的中线或高时,结论依然成立.理由:当AD为△ABC的中线时,,,由(1)的结论,易证ABC是等边三角形;当AD为△ABC的高时,,,由(1)的结论,易证ABC是等边三角形;【题目点拨】此题主要考查了等边三角形的判定,综合利用了等腰三角形和直角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 北京车位产权管理办法
- 资本驱动下人工智能产业化的伦理挑战与应对策略
- 睡眠剥夺对小鼠色氨酸代谢及行为影响机制研究
- 体检机构备案管理办法
- 佛山酒店宿舍管理办法
- 西部地区经济韧性对经济高质量发展的影响研究
- 基于机器视觉的钢板表面缺陷自动检测系统设计与实现
- 未发生较大及以上生产安全事故
- 智慧医院建设管理办法
- 新版安全生产应急预案模板
- 2025年房地产销售经理季度工作总结及年度计划
- 低压培训课件
- 教师团队协作与沟通能力
- 保安公司薪酬管理制度
- 井盖巡查管理制度
- GB/T 33490-2025展览展示工程服务基本要求
- 2024年国能榆林化工有限公司招聘真题
- 消防总队面试题目及答案
- 《低钠血症中国专家共识(2023年版)》解读课件
- GB/T 45604-2025船舶与海洋技术大抓力平衡锚
- 国家中小学智慧教育平台与人工智能融合应用指南(试行)
评论
0/150
提交评论