湖南省张家界市名校2024届数学八上期末监测试题含解析_第1页
湖南省张家界市名校2024届数学八上期末监测试题含解析_第2页
湖南省张家界市名校2024届数学八上期末监测试题含解析_第3页
湖南省张家界市名校2024届数学八上期末监测试题含解析_第4页
湖南省张家界市名校2024届数学八上期末监测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省张家界市名校2024届数学八上期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.已知实数在数轴上的位置如图,则化简的结果为()A.1 B.-1 C. D.2.在下列命题中,真命题是()A.同位角相等 B.到角的两边距离相等的点在这个角的平分线上C.两锐角互余 D.直角三角形斜边上的中线等于斜边的一半3.若点,在直线上,且,则该直线经过象限是()A.一、二、三 B.一、二、四 C.二、三、四 D.一、三、四4.下列四个命题:①两直线平行,内错角相等;②对顶角相等;③等腰三角形的两个底角相等;④菱形的对角线互相垂直,其中逆命题是真命题的是()A.①②③④ B.①③④ C.①③ D.①5.如图,用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形,图2中,的大小是()A. B. C. D.6.已知一个多边形的每个内角都等于,则这个多边形一定是()A.七边形 B.正七边形 C.九边形 D.不存在7.王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是()组别

A型

B型

C型

O型

频率

0.4

0.35

0.1

0.15

A.16人 B.14人 C.4人 D.6人8.在中,按一下步骤作图:①分别以为圆心,大于的长为半径画弧,相交于两点;②作直线交于点,连接.若,,则()A.30° B.35° C.40° D.45°9.如图,在等腰△ABC中,AB=AC,∠A=20°,AB上一点D,且AD=BC,过点D作DE∥BC且DE=AB,连接EC,则∠DCE的度数为()A.80° B.70° C.60° D.45°10.A,B两地相距20,甲乙两人沿同一条路线从地到地,如图反映的是二人行进路程()与行进时间()之间的关系,有下列说法:①甲始终是匀速行进,乙的行进不是匀速的;②乙用了4个小时到达目的地;③乙比甲先出发1小时;④甲在出发4小时后被乙追上,在这些说法中,正确的有()A.1个 B.2个 C.3个 D.4个11.多边形每个外角为45°,则多边形的边数是()A.8 B.7 C.6 D.512.已知,,,则、、的大小关系是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,将△ABC沿着DE对折,点A落到A′处,若∠BDA′+∠CEA′=70°,则∠A=_____.14.如图,一块含有角的直角三角板,外框的一条直角边长为,三角板的外框线和与其平行的内框线之间的距离均为,则图中阴影部分的面积为_______(结果保留根号)15.我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a、b,那么的值是____.16.已知、满足,,则的值等于_______.17.一组数据4,,,4,,4,,4中,出现次数最多的数是4,其频率是__________.18.一次数学活动课上.小聪将一副三角板按图中方式叠放,则∠α等于_____.三、解答题(共78分)19.(8分)先化简,再求值:其中20.(8分)如图,在平面直角坐标系中,点O为坐标原点,点A(0,3)与点B关于x轴对称,点C(n,0)为x轴的正半轴上一动点.以AC为边作等腰直角三角形ACD,∠ACD=90°,点D在第一象限内.连接BD,交x轴于点F.(1)如果∠OAC=38°,求∠DCF的度数;(2)用含n的式子表示点D的坐标;(3)在点C运动的过程中,判断OF的长是否发生变化?若不变求出其值,若变化请说明理由.21.(8分)解方程:(1);(2).22.(10分)在△ABC中,AB=AC,D是BC的中点,以AC为腰向外作等腰直角△ACE,∠EAC=90°,连接BE,交AD于点F,交AC于点G.(1)若∠BAC=50°,求∠AEB的度数;(2)求证:∠AEB=∠ACF;(3)试判断线段EF、BF与AC三者之间的等量关系,并证明你的结论.23.(10分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(1,0),B(2,-3),C(4,-2).(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)画出△A1B1C1向左平移3个单位长度后得到的△A2B2C2;(3)如果AC上有一点P(m,n)经过上述两次变换,那么对应A2C2上的点P2的坐标是______.24.(10分)把下列各式分解因式:(1)(2)25.(12分)2018年10月23日,港珠澳大桥正式开通.港珠澳大桥东起香港口岸人工岛,向西止于珠海洪湾,总长约55千米,是粤港澳三地首次合作共建的超大型跨海交通工程.10月24日正式通车当天,甲乙两辆巴士同时从香港国际机场附近的香港口岸人工岛出发,已知甲乙两巴士的速度比是,乙巴士比甲巴士早11分钟到达洪湾,求两车的平均速度各是多少千米/时?26.八年级学生去距离学校10千米的素质教育基地参加实践活动,上午8点40分一部分学生骑自行车先走;9点整,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.

参考答案一、选择题(每题4分,共48分)1、D【分析】直接利用绝对值的性质和二次根式的性质化简得出答案.【题目详解】解:由数轴可得:,所以,则.故选:D.【题目点拨】此题主要考查了绝对值的性质和二次根式的性质与化简,正确去掉绝对值符号,化简二次根式是解题关键.2、D【分析】逐项作出判断即可.【题目详解】解:A.同位角相等,是假命题,不合题意;B.到角的两边距离相等的点在这个角的平分线上,是假命题,不合题意;C.两锐角互余,是假命题,不合题意;D.直角三角形斜边上的中线等于斜边的一半,是真命题,符合题意.故选:D【题目点拨】本题考查了同位角,互余,角平分线的判定,直角三角形性质,熟知相关定理是解题关键,注意B选项,少了“在角的内部”这一条件.3、B【分析】根据两个点的横坐标、纵坐标的大小关系,得出y随x的增大而减小,进而得出k的取值范围,再根据k、b的符号,确定图象所过的象限即可.【题目详解】解:∵a<a+1,且y1>y2,

∴y随x的增大而减小,

因此k<0,

当k<0,b=2>0时,一次函数的图象过一、二、四象限,

故选:B.【题目点拨】本题考查一次函数的图象和性质,掌握一次函数的增减性是正确解答的前提.4、C【解题分析】首先写出各个命题的逆命题,然后进行判断即可.【题目详解】①两直线平行,内错角相等;其逆命题:内错角相等,两直线平行,是真命题;②对顶角相等,其逆命题:相等的角是对顶角,是假命题;③等腰三角形的两个底角相等,其逆命题:有两个角相等的三角形是等腰三角形,是真命题;④菱形的对角线互相垂直,其逆命题:对角线互相垂直的四边形是菱形,是假命题;故选C.【题目点拨】本题考查了写一个命题的逆命题的方法,真假命题的判断,弄清命题的题设与结论,掌握相关的定理是解题的关键.5、B【分析】根据多边形内角和公式可求出∠ABC的度数,根据等腰三角形的性质求出∠BAC的度数即可.【题目详解】∵ABCDE是正五边形,∴∠ABC=×(5-2)×180°=108°,∵AB=BC,∴∠BAC=×(180°-108°)=36°,故选B.【题目点拨】本题考查了多边形内角和及等腰三角形的性质,熟练掌握多边形内角和公式是解题关键.6、A【分析】直接利用多边形内角和定理即可求解.【题目详解】解:设这个多边形的边数为n,则(n-2)×180°=n解得:n=7故选:A【题目点拨】本题主要考查多边形内角和定理,关键要掌握多边形内角和定理:n边形的内角和是(n-2)×180°(n≥3,且n为整数).7、A【解题分析】根据频数、频率和总量的关系:频数=总量×频率,得本班A型血的人数是:40×0.4=16(人).故选A.8、B【分析】利用线段垂直平分线的性质得出∠DAB=∠ABD,由等腰三角形的性质求出∠CDB=∠CBD=70°,进而结合三角形外角的性质进而得出答案.【题目详解】解:由题意可得:MN垂直平分AB,∴AD=BD,∴∠DAB=∠ABD,∵DC=BC,∴∠CDB=∠CBD,∵,∠C=40°,∴∠CDB=∠CBD=70°,∴∠A=∠ABD=35°.故选:B.【题目点拨】此题主要考查了等腰三角形的性质,三角形外角的性质,以及线段垂直平分线的作法与性质,正确得出∠DAB=∠ABD是解题关键.9、B【解题分析】连接AE.根据ASA可证△ADE≌△CBA,根据全等三角形的性质可得AE=AC,∠AED=∠BAC=20°,根据等边三角形的判定可得△ACE是等边三角形,根据等腰三角形的判定可得△DCE是等腰三角形,再根据三角形内角和定理和角的和差关系即可求解.【题目详解】如图所示,连接AE.∵AB=DE,AD=BC∵DE∥BC,∴∠ADE=∠B,可得AE=DE∵AB=AC,∠BAC=20°,∴∠DAE=∠ADE=∠B=∠ACB=80°,在△ADE与△CBA中,,∴△ADE≌△CBA(ASA),∴AE=AC,∠AED=∠BAC=20°,∵∠CAE=∠DAE-∠BAC=80°-20°=60°,∴△ACE是等边三角形,∴CE=AC=AE=DE,∠AEC=∠ACE=60°,∴△DCE是等腰三角形,∴∠CDE=∠DCE,∴∠DEC=∠AEC-∠AED=40°,∴∠DCE=∠CDE=(180-40°)÷2=70°.故选B.【题目点拨】考查了等腰三角形的性质,全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,三角形内角和定理,平行线的性质,综合性较强,有一定的难度.10、A【分析】根据题意结合图象依次判断即可.【题目详解】①甲始终是匀速行进,乙的行进不是匀速的,正确;②乙用了4个小时到达目的地,错误;③乙比甲先出发1小时,错误;④甲在出发4小时后被乙追上,错误,故选:A.【题目点拨】此题考查一次函数图象,正确理解题意,会看函数图象,将两者结合是解题的关键.11、A【分析】利用多边形外角和除以外角的度数即可【题目详解】解:多边形的边数:360÷45=8,故选A.【题目点拨】此题主要考查了多边形的外角,关键是掌握正多边形每一个外角度数都相等12、D【分析】根据幂的运算法则,把各数化为同底数幂进行比较.【题目详解】因为,,所以故选:D【题目点拨】考核知识点:幂的乘方.逆用幂的乘方公式是关键.二、填空题(每题4分,共24分)13、35°【分析】根据折叠的性质得到∠A′DE=∠ADE,∠A′ED=∠AED,由平角的定义得到∠BDA′+2∠ADE=180°,∠A′EC+2∠AED=180°,根据已知条件得到∠ADE+∠AED=140°,由三角形的内角和即可得到结论.【题目详解】解:∵将△ABC沿着DE对折,A落到A′,∴∠A′DE=∠ADE,∠A′ED=∠AED,∴∠BDA′+2∠ADE=180°,∠A′EC+2∠AED=180°,∴∠BDA′+2∠ADE+∠CEA′+2∠AED=360°,∵∠BDA′+∠CEA′=70°,∴∠ADE+∠AED==145°,∴∠A=35°.故答案为:35°.【题目点拨】本题考查图形的折叠变化及三角形的内角和定理.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.14、【分析】过顶点A作AB⊥大直角三角形底边,先求出CD,然后得到小等腰直角三角形的底和高,再利用大直角三角形的面积减去小直角三角形面积即可【题目详解】如图:过顶点A作AB⊥大直角三角形底边由题意:∴=cm∴小等腰直角三角形的直角边为cm∴大等腰直角三角形面积为10×10÷2=50cm2小等腰直角三角形面积为=36-16cm2∴【题目点拨】本题主要考查阴影部分面积的计算,涉及到直角三角形的基本性质,本题关键在于做出正确的辅助线进行计算15、1.【解题分析】根据勾股定理可以求得a2+b2等于大正方形的面积,然后求四个直角三角形的面积,即可得到ab的值,然后根据(a-b)2=a2-2ab+b2即可求解.【题目详解】解:根据勾股定理可得a2+b2=13,

四个直角三角形的面积是:ab×4=13-1=12,即:2ab=12,

则(a-b)2=a2-2ab+b2=13-12=1.

故答案为:1.【题目点拨】本题考查勾股定理,以及完全平方式,正确根据图形的关系求得a2+b2和ab的值是关键.16、或.【分析】分两种情况:当时,由,,构造一元二次方程,则其两根为,利用根与系数的关系可得答案,当时,代入代数式即可得答案,【题目详解】解:时,、满足,,、是关于的方程的两根,,,则当时,原式的值等于或.故答案为:或.【题目点拨】本题考查的是利用一元二次方程的根与系数的关系求代数式的值,掌握分类讨论,一元二次方程的构造是解题的关键.17、0.5【分析】根据频率=某数出现的次数÷数字总数,4在这组数据中出现了4次,这组数据总共有8个数字,代入公式即可求解.【题目详解】解:4÷8=0.5故答案为:0.5【题目点拨】本题主要考查的是频率的计算,正确的掌握频率的计算公式,将相应的数据代入是解本题的关键.18、75【解题分析】根据两直线平行,内错角相等求出∠1的度数,再根据三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解.解:如图,∠1=30°,所以,∠=∠1+45°=30°+45°=75°.故答案为75°.“点睛”本题主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.三、解答题(共78分)19、-2【分析】先利用完全平方式展开化简,再将x,y的值代入求解即可.【题目详解】解:原式=(+2x-2xy+y--y)=(-4xy+2x)=-2x+8y-4,代入得该式=-2.【题目点拨】本题主要考察整式化简,细心化简是解题关键.20、(1)18°;(2)点D的坐标(n+1,n);(1)OF的长不会变化,值为1.【分析】(1)根据同角的余角相等可得∠DCF=∠OAC,进而可得结果;(2)作DH⊥x轴于点H,如图1,则可根据AAS证明△AOC≌△CHD,于是可得OC=DH,AO=CH,进而可得结果;(1)方法一:由轴对称的性质可得AC=BC,于是可得AC=BC=DC,进一步即得∠BAC=∠ABC,∠CBD=∠CDB,而∠ACB+∠DCB=270°,则可根据三角形的内角和定理推出∠ABC+∠CBD=45°,进一步即得△OBF是等腰直角三角形,于是可得OB=OF,进而可得结论;方法2:如图2,连接AF交CD于点M,由轴对称的性质可得AC=BC,AF=BF,进一步即可根据等腰三角形的性质以及角的和差得出∠CAF=∠CBF,易得BC=DC,则有∠CBF=∠CDF,可得∠CAF=∠CDF,然后根据三角形的内角和定理可得∠AFD=∠ACD=90°,即得△AFB是等腰直角三角形,然后根据等腰直角三角形的性质可推出OF=OA,问题即得解决.【题目详解】解:(1)∵∠AOC=90°,∴∠OAC+∠ACO=90°.∵∠ACD=90°,∴∠DCF+∠ACO=90°,∴∠DCF=∠OAC,∵∠OAC=18°,∴∠DCF=18°;(2)过点D作DH⊥x轴于点H,如图1,则∠AOC=∠CHD=90°,∵△ACD是等腰直角三角形,∠ACD=90°,∴AC=CD,又∵∠OAC=∠DCF,∴△AOC≌△CHD(AAS),∴OC=DH=n,AO=CH=1,∴点D的坐标为(n+1,n);(1)不会变化.方法一:∵点A(0,1)与点B关于x轴对称,∴AO=BO=1,AC=BC,∴∠BAC=∠ABC,又∵AC=CD,∴BC=CD,∴∠CBD=∠CDB,∵∠ACD=90°,∴∠ACB+∠DCB=270°,∴∠BAC+∠ABC+∠CBD+∠CDB=90°,∴∠ABC+∠CBD=45°,∵∠BOF=90°,∴∠OFB=45°,∴∠OBF=∠OFB=45°,∴OB=OF=1,即OF的长不会变化;方法2:如图2,连接AF交CD于点M,∵点A与点B关于x轴对称,∴AC=BC,AF=BF,∴∠OAC=∠OBC,∠OAF=∠OBF,∴∠OAF−∠OAC=∠OBF−∠OBC,即∠CAF=∠CBF,∵AC=CD,AC=BC,∴BC=CD,∴∠CBF=∠CDF,∴∠CAF=∠CDF,又∵∠AMC=∠DMF,∴∠AFD=∠ACD=90°,∴∠AFB=90°,∴∠AFO=∠OFB=45°,∴∠AFO=∠OAF=45°,∴OF=OA=1,即OF的长不会变化.【题目点拨】本题以直角坐标系为载体,主要考查了全等三角形的判定与性质、等腰直角三角形的判定与性质、三角形的内角和定理、轴对称的性质和等腰三角形的性质等知识,涉及的知识点多,属于常考题型,熟练掌握上述基本知识是解题的关键.21、(1)x=4;(2)x=.【解题分析】试题分析:(1)方程两边都乘以公因式(x+2)(x-2),化为整式方程后求解,注意验根;(2)方程两边都乘以公因式(x+1)(x-1),化为整式方程后求解,注意验根;试题解析:(1)方程两边乘(x+2)(x-2),得3x(x-2)+2(x+2)=3(x+2)(x-2).化简得-4x=-16,解得x=4.经检验,x=4是原方程的解.所以原方程的解是x=4;(2)方程两边都乘以(x+1)(x-1),去分母,得4-(x+1)(x+2)=-(x+1)(x-1).解得x=.经检验,x=是原方程的解.所以原方程的解是x=.22、(1)10°;(1)证明见解析;(3)EF1+BF1=1AC1.理由见解析.【分析】(1)根据等腰直角三角形的旋转得出∠ABE=∠AEB,求出∠BAE,根据三角形内角和定理求出即可;(1)根据等腰三角形的性质得出∠BAF=∠CAF,根据SAS推出△BAF≌△CAF,根据全等得出∠ABF=∠ACF,即可得出答案;(3)根据全等得出BF=CF,求出∠CFG=∠EAG=90°,根据勾股定理求出EF1+BF1=EF1+CF1=EC1,EC1=AC1+AE1=1AC1,即可得出答案.【题目详解】(1)∵AB=AC,△ACE是等腰直角三角形,∴AB=AE,∴∠ABE=∠AEB,又∵∠BAC=50°,∠EAC=90°,∴∠BAE=50°+90°=140°,∴∠AEB=(180°-140°)÷1=10°;(1)∵AB=AC,D是BC的中点,∴∠BAF=∠CAF.在△BAF和△CAF中,∴△BAF≌△CAF(SAS),∴∠ABF=∠ACF,∵∠ABE=∠AEB,∴∠AEB=∠ACF;(3)∵△BAF≌△CAF,∴BF=CF,∵∠AEB=∠ACF,∠AGE=∠FGC,∴∠CFG=∠EAG=90°,∴EF1+BF1=EF1+CF1=EC1,∵△ACE是等腰直角三角形,∴∠CAE=90°,AC=AE,∴EC1=AC1+AE1=1AC1,即EF1+BF1=1AC1.【题目点拨】本题考查了勾股定理,全等三角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论