福建省泉州台商投资区2024届八年级数学第一学期期末经典试题含解析_第1页
福建省泉州台商投资区2024届八年级数学第一学期期末经典试题含解析_第2页
福建省泉州台商投资区2024届八年级数学第一学期期末经典试题含解析_第3页
福建省泉州台商投资区2024届八年级数学第一学期期末经典试题含解析_第4页
福建省泉州台商投资区2024届八年级数学第一学期期末经典试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省泉州台商投资区2024届八年级数学第一学期期末经典试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.今天数学课上,老师讲了单项式乘多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:-3xy(4y-2x-1)=-12xy2+6x2y+□,□的地方被钢笔水弄污了,你认为□内应填写()A.3xy B.-3xy C.-1 D.12.下列命题中是真命题的是()A.三角形的任意两边之和小于第三边B.三角形的一个外角等于任意两个内角的和C.两直线平行,同旁内角相等D.平行于同一条直线的两条直线平行3.的计算结果是()A. B. C.0 D.14.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cmC.13cm,12cm,20cm D.5cm,5cm,11cm5.如图,边长为a,b的矩形的周长为10,面积为6,则a2b+ab2的值为()A.60 B.16 C.30 D.116.若,则分式等于()A. B. C.1 D.7.如图,已知的大小为,是内部的一个定点,且,点,分别是、上的动点,若周长的最小值等于,则的大小为()A. B. C. D.8.为了筹备班级元旦联欢晚会,班长打算先对全班同学爱吃什么水果进行民意调查,再决定买哪种水果.下面的调查数据中,他最应该关注的是()A.众数 B.中位数 C.平均数 D.加权平均数9.角平分线的作法(尺规作图)①以点O为圆心,任意长为半径画弧,交OA、OB于C、D两点;②分别以C、D为圆心,大于CD长为半径画弧,两弧交于点P;③过点P作射线OP,射线OP即为所求.角平分线的作法依据的是()A.SSS B.SAS C.AAS D.ASA10.据广东省旅游局统计显示,年月全省旅游住宿设施接待过夜旅客约人,将用科学计数法表示为()A. B. C. D.11.过点作直线,使它与两坐标轴围成的三角形面积为,这样的直线可以作()A.条 B.条 C.条 D.条12.如图,将一根长13厘米的筷子置于底面直径为6厘米,高为8厘米的圆柱形杯子中,则筷子露在杯子外面的长度至少为()厘米.A.1 B.2 C.3 D.4二、填空题(每题4分,共24分)13.如图,在中,的垂直平分线交的平分线于,若,,则的度数是________.14.若3a2﹣a﹣2=0,则5+2a﹣6a2=_____.15.如图,边长为1的菱形ABCD中,∠DAB=60°.连结对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连结AE,再以AE为边作第三个菱形AEGH使∠HAE=60°…按此规律所作的第n个菱形的边长是.16.根据数量关系:的5倍加上1是正数,可列出不等式:__________.17.如图,在平面直角坐标系中,己知点,.作,使与全等,则点坐标为_______________.18.在实数范围内分解因式:_______.三、解答题(共78分)19.(8分)如图,在长方形ABCO中,点O为坐标原点,点B的坐标为(8,6),点A,C在坐标轴上,直线y=2x+b经过点A且交x轴于点F.(1)求b的值和△AFO的面积;(2)将直线y=2x+b向右平移6单位后交AB于点D,交y轴于点E;①求点D,E的坐标;②动点P在BC边上,点Q是坐标平面内第一象限内的点,且在平移后的直线上,若△APQ是等腰直角三角形,求点Q的坐标.20.(8分)如图,小区有一块四边形空地,其中.为响应沙区创文,美化小区的号召,小区计划将这块四边形空地进行规划整理.过点作了垂直于的小路.经测量,,,.(1)求这块空地的面积;(2)求小路的长.(答案可含根号)21.(8分)在平面直角坐标系xOy中,点A(t﹣1,1)与点B关于过点(t,0)且垂直于x轴的直线对称.(1)以AB为底边作等腰三角形ABC,①当t=2时,点B的坐标为;②当t=0.5且直线AC经过原点O时,点C与x轴的距离为;③若上所有点到y轴的距离都不小于1,则t的取值范围是.(2)以AB为斜边作等腰直角三角形ABD,直线m过点(0,b)且与x轴平行,若直线m上存在点P,上存在点K,满足PK=1,直接写出b的取值范围.22.(10分)张庄甲、乙两家草莓采摘园的草莓销售价格相同,“春节期间”,两家采摘园将推出优惠方案,甲园的优惠方案是:游客进园需购买门票,采摘的草莓六折优惠;乙园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,某游客的草莓采摘量为x(千克),在甲园所需总费用为y甲(元),在乙园所需总费用为y乙(元),y甲、y乙与x之间的函数关系如图所示,折线OAB表示y乙与x之间的函数关系.(1)甲采摘园的门票是元,乙采摘园优惠前的草莓单价是每千克元;(2)当x>10时,求y乙与x的函数表达式;(3)游客在“春节期间”采摘多少千克草莓时,甲、乙两家采摘园的总费用相同.23.(10分)把两个含有角的直角三角板和如图放置,点在同一直线上,点在上,连接,,的延长线交于点.猜想与有怎样的关系?并说明理由.24.(10分)如图,长方形中∥,边,.将此长方形沿折叠,使点与点重合,点落在点处.(1)试判断的形状,并说明理由;(2)求的面积.25.(12分)如图,∠ACB=90∘,∠A=35∘,∠BCD=26.在开展“学雷锋社会实践”活动中,某校为了解全校1000名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成如图的条形统计图:(1)这50个样本数据的中位数是次,众数是次;(2)求这50个样本数据的平均数;(3)根据样本数据,估算该校1000名学生大约有多少人参加了4次实践活动.

参考答案一、选择题(每题4分,共48分)1、A【题目详解】解:∵左边=-3xy(4y-2x-1)=-12xy2+6x2y+3xy右边=-12xy2+6x2y+□,∴□内上应填写3xy故选:A.2、D【分析】根据三角形的三边关系、三角形的外角性质、平行线的性质、平行公理判断即可.【题目详解】解:A、三角形的任意两边之和大于第三边,本选项说法是假命题;B、三角形的一个外角等于与它不相邻的两个内角的和,本选项说法是假命题;C、两直线平行,同旁内角互补,本选项说法是假命题;D、平行于同一条直线的两条直线平行,本选项说法是真命题;故选:D.【题目点拨】本题主要考查真假命题,掌握三角形的三边关系、三角形的外角性质、平行线的性质、平行公理是解题的关键.3、D【解题分析】根据非零数的零次幂等于1解答即可.【题目详解】=1.故选D.【题目点拨】本题考查了零次幂的意义,熟练掌握非零数的零次幂等于1是解答本题的关键.4、C【分析】根据三角形的三边关系逐项判断即得答案.【题目详解】解:A、因为3+4<8,所以3cm,4cm,8cm的三根小木棒不能摆成三角形,故本选项不符合题意;B、因为8+7=15,所以8cm,7cm,15cm的三根小木棒不能摆成三角形,故本选项不符合题意;C、因为13+12>20,所以13cm,12cm,20cm的三根小木棒能摆成三角形,故本选项符合题意;D、因为5+5<11,所以5cm,5cm,11cm的三根小木棒不能摆成三角形,故本选项不符合题意.故选:C.【题目点拨】本题考查了三角形的三边关系,属于基本题型,熟练掌握基本知识是解题的关键.5、C【分析】先把所给式子提公因式进行因式分解,整理为与所给周长和面积相关的式子,再代入求值即可.【题目详解】∵矩形的周长为10,∴a+b=5,∵矩形的面积为6,∴ab=6,

∴a2b+ab2=ab(a+b)=1.

故选:C.【题目点拨】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.6、D【分析】由分式的加减法法则,“异分母的分式相加减,先通分,化为同分母的分式,然后分母不变,把分子相加减”可知,又,即可求解.【题目详解】解:,又∵,故原式=-1.故选:D.【题目点拨】本题主要考查分式的加减,熟悉掌握分式的加减法法则是关键.7、A【分析】作P点关于OA的对称点C,关于OB的对称点D,当点E、F在CD上时,△PEF的周长最小,根据CD=2可求出的度数.【题目详解】解:如图作P点关于OA的对称点C,关于OB的对称点D,连接CD,交OA于点E,交OB于点F,此时,△PEF的周长最小;连接OC,OD,PE,PF∵点P与点C关于OA对称,∴OA垂直平分PC,,PE=CE,OC=OP,同理可得,∴,∴∵△PEF的周长为,∴△OCD是等边三角形,∴故本题最后选择A.【题目点拨】本题找到点E、F的位置是解题的关键,要使△PEF的周长最小,通常是把三边的和转化为一条线段进行解答.8、A【解题分析】众数、中位数、平均数从不同角度反映了一组数据的集中趋势,但该问题应当看最爱吃哪种水果的人最多,故应当用众数.【题目详解】此问题应当看最爱吃哪种水果的人最多,应当用众数.故选A.【题目点拨】本体考查了众数、中位数、平均数的意义,解题时要注意题目的实际意义.9、A【分析】根据角平分线的作法步骤,连接CP、DP,由作图可证△OCP≌△ODP,则∠COP=∠DOP,而证明△OCP≌△ODP的条件就是作图的依据.【题目详解】解:如下图所示:连接CP、DP在△OCP与△ODP中,由作图可知:∴△OCP≌△ODP(SSS)故选:A.【题目点拨】本题考查了角平分线的求证过程,从角平分线的作法中寻找证明三角形全等的条件是解决本题的关键。10、C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】将27700000用科学记数法表示为2.77×107,故选:C.【题目点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11、C【分析】先设出函数解析式,y=kx+b,把点P坐标代入,得-k+b=3,用含k的式子表示b,得b=k+3,求出直线与x轴交点坐标,y轴交点坐标,求三角形面积,根据k的符号讨论方程是否有解即可.【题目详解】设直线解析式为:y=kx+b,点P(-1,3)在直线上,-k+b=3,b=k+3,y=kx+3+k,当x=0时,y=k+3,y=0时,x=,S△=,,当k>0时,(k+3)2=10k,k2-4k+9=0,△=-20<0,无解;当k<0时,(k+3)2=-10k,k2+16k+9=0,△=220>0,k=.故选择:C.【题目点拨】本题考查的是直线与坐标轴围成的三角形面积问题,关键是用给的点坐标来表示解析式,求出与x,y轴的交点坐标,列出三角形面积,进行分类讨论.12、C【分析】首先应根据勾股定理求得圆柱形水杯的最大线段的长度,即=10,故筷子露在杯子外面的长度至少为多少可求出.【题目详解】解:如图所示,筷子,圆柱的高,圆柱的直径正好构成直角三角形,∴勾股定理求得圆柱形水杯的最大线段的长度,即=10(cm),∴筷子露在杯子外面的长度至少为13﹣10=3cm,故选C.【题目点拨】本题考查勾股定理的应用,解题的关键是掌握勾股定理的应用.二、填空题(每题4分,共24分)13、58°【分析】根据角平分线的性质可得∠DBC=∠ABD,再根据线段垂直平分线的性质可得BE=CE,可得出∠DBC=∠ECB=∠ABD,然后根据三角形内角和定理计算出∠DBC的度数,即可算出∠BEF的度数.【题目详解】解:∵BD平分∠ABC,

∴∠DBC=∠ABD,∵的垂直平分线交的平分线于,

∴BE=CE,

∴∠DBC=∠ECB=∠ABD,∵,,

∴∠DBC=(180°-60°-24°)=32°,

∴∠BEF=90°-32°=58°,

故答案为:58°.【题目点拨】本题考查线段垂直平分线的性质,以及三角形内角和定理,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.14、1【分析】先观察3a2﹣a﹣2=0,找出与代数式5+2a﹣6a2之间的内在联系后,代入求值.【题目详解】解:∵3a2﹣a﹣2=0,∴3a2﹣a=2,∴5+2a﹣6a2=5﹣2(3a2﹣a)=5﹣2×2=1.故答案为:1.【题目点拨】本题考查了整体代入法求代数式的值,以及添括号法则.添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.15、【题目详解】试题分析:连接DB,BD与AC相交于点M,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB.∵∠DAB=60°,∴△ADB是等边三角形.∴DB=AD=1,∴BM=∴AM=∴AC=.同理可得AE=AC=()2,AG=AE=()3,…按此规律所作的第n个菱形的边长为()n-116、【分析】问题中的“正数”是关键词语,将它转化为数学符号即可.【题目详解】题中“x的5倍加上1”表示为:“正数”就是的5倍加上1是正数,可列出不等式:故答案为.【题目点拨】用不等式表示不等关系是研究不等式的基础,在表示时,一定要抓住关键词语,弄清不等关系,把文字语言和不等关系转化为用数学符号表示的不等式.17、(1,0)、(1,2)、(﹣1,2)【分析】根据全等三角形的判定和已知点的坐标画出满足要求图形,即可得出答案.【题目详解】如图所示,有三个点符合要求,∵点A(0,2),点B(﹣1,0)∴AO=2,BO=1∵△AOB≌△AOC∴AO=AO=2,BO=CO=1∴C₁(1,0)、C₂(1,2)、C₃(﹣1,2)故答案为:(1,0)、(1,2)、(﹣1,2)【题目点拨】本题主要考查全等三角形的性质:两三角形全等,对应边相等和点到坐标轴的距离与点的坐标的关系:到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关.掌握这些知识点是解题的关键.18、【分析】先把含未知数项配成完全平方,再根据平方差公式进行因式分解即可.【题目详解】故填:.【题目点拨】本题主要考查利用完全平方和平方差公式进行因式分解,熟练掌握公式是关键.三、解答题(共78分)19、(1)b=6,S△ADO=×3×6=;(2)①D(6,6),E(0,-6);②点Q的坐标可以为(,),(4,2),(,).【分析】(1)由矩形的性质和点B坐标求得A坐标,代入直线方程中即可求得b值,进而求得点F坐标,然后利用三角形面积公式即可解答;(2)①根据图象平移规则:左加右减,上加下减得到平移后的解析式,进而由已知可求得点D、E的坐标;②根据题意,分三种情况:若点A为直角顶点时,点Q在第一象限;若点P为直角顶点时,点Q在第一象限;若点Q为直角顶点,点Q在第一象限,画出对应的图象分别讨论求解即可.【题目详解】(1)由题意得A(0,6),代入y=2x+b中,解得:b=6,即y=2x+6,令y=0,由0=2x+6得:x=-3,即F(-3,0)∴OA=6,OF=3,∴S△ADO=×3×6=;

(2)①由题意得平移后的解析式为:y=2(x-6)+6=2x-6当y=6时,2x-6=6,解得:x=6∴D(6,6),E(0,-6)②若点A为直角顶点时,点Q在第一象限,连结AC,如图2,∠APB>∠ACB>45°,∴△APQ不可能为等腰直角三角形,∴点Q不存在;若点P为直角顶点时,点Q在第一象限,如图3,过点Q作QH⊥CB,交CB的延长线于点H,则Rt△ABP≌Rt△PHQ,∴AB=PH=8,HQ=BP,设Q(x,2x−6),则HQ=x−8,∴2x−6=8+6−(x−8),∴x=,∴Q(,)若点Q为直角顶点,点Q在第一象限,如图4,设Q′(x,2x−6),∴AG′=Q′H′=6−(2x−6),∴x+6−(2x−6)=8,∴x=4,∴Q′(4,2),设Q′′(x,2x−6),同理可得:x+2x−6−6=8,∴x=,∴Q′′(,),综上所述,点Q的坐标可以为(,),(4,2),(,).【题目点拨】本题是一道一次函数与几何图形的综合题,涉及图形与坐标、求一次函数的表达式、直线与坐标轴围成的面积、图象平移的坐标变化、等腰直角三角形的判定、解一元一次方程等知识,解答的关键是认真审题,从图象中获取相关信息,利用数形结合法、待定系数法、分类讨论的思想方法确定解题思路,进而推理、探究和计算.20、(1)(2+14)m2;(2)【分析】(1)根据AB和BC算出AC的长,再由AD和CD的长得出△ACD是直角三角形,分别算出△ABC和△ACD的面积即可;(2)利用三角形面积的两种不同表示方法,即×AB×AC=×BC×AE可得AE的长.【题目详解】解:(1)∵AB⊥AC,AB=4,BC=9,∴在△ABC中,==,∵CD=4,AD=7,,即:,∴空地ABCD的面积=S△ABC+S△ADC=×AB×AC+×AD×CD=(2+14)m2;(2)在△ABC中,S△ABC=×AB×AC=×BC×AE,可得AB×AC=BC×AE,即4×=9×AE解得AE=.答:小路AE的长为m.【题目点拨】本题考查了勾股定理及其逆定理,用勾股定理求出直角三角形第三边长,用逆定理判定三角形为直角三角形是解题的关键,同时会利用三角形面积算法求直角三角形斜边上的高.21、(1)①(3,1);②1;③或;(2)当点D在AB上方时,若直线m上存在点P,上存在点K,满足PK=1,则;当点D在AB下方时,若直线m上存在点P,上存在点K,满足PK=1,则.或【分析】(1)①根据A,B关于直线x=2对称解决问题即可.②求出直线OA与直线x=0.5的交点C的坐标即可判断.③由题意,根据△ABC上所有点到y轴的距离都不小于1,构建不等式即可解决问题.(2)由题意AB=,由△ABD是以AB为斜边的等腰直角三角形,推出点D到AB的距离为1,分两种情形分别求解即可解决问题.【题目详解】解:(1)①如图1中,当A(1,1),A,B关于直线x=2对称,∴B(3,1).故答案为(3,1).②如图2中,当A(﹣0.5,1),,直线l:x=0.5,设为,在上,直线AC的解析式为y=﹣2x,∴C(0.5,﹣1),∴点C到x轴的距离为1,故答案为1.③由题意,∵上所有点到y轴的距离都不小于1,∴t﹣1≥1或t+1≤﹣1,解得或.故答案为:或.(2)如图3中,∵,∴AB=∵是以AB为斜边的等腰直角三角形,∴点D到AB的距离为1,∴当点D在AB上方时,若直线m上存在点P,上存在点K,满足PK=1,则.当点D在AB下方时,若直线m上存在点P,上存在点K,满足PK=1,则.综上:的取值范围是:【题目点拨】本题属于一次函数综合题,考查了一次函数的性质,轴对称,等腰三角形的性质等知识,解题的关键是理解题意,学会利用参数根据不等式解决问题.22、(1)甲采摘园的门票是60元,乙采摘园优惠前的草莓单价是每千克30元;(2)y乙=12x+180;(3)采摘5千克或20千克草莓时,甲、乙两家采摘园的总费用相同【分析】(1)根据图像,可得出甲采摘园的门票价格,根据点A的坐标,可得出乙采摘园在优惠前草莓的单价;(2)将A、B两点代入解析式,用待定系数法可求得;(3)先求出y甲的解析式,然后分2段,分别令=即可.【题目详解】解:(1)由图象可得,甲采摘园的门票是60元点A(10,300)故乙采摘园优惠前的草莓单价为:=30元(2)当x>10时,设y乙与x的函数表达式是=kx+b,,得,即当x>10时,与x的函数表达式是=12x+180;(3)由题意可得,=60+300.6x=18x+60,当0<x<10时,令18x+60=30x,得x=5,当x>10时,令12x+180=18x+60,得x=20,答:采摘5千克或20千克草莓时,甲、乙两家采摘园的总费用相同.【题目点拨】本题考查一次函数的应用,需要注意乙采摘园的费用是一个分段函数,故在讨论时,需要分段分别讨论.23、AD=BE,AD⊥BE【分析】根据△ABC和△CDE都是等腰直角三角形,可证明△ACD≌△BCE,进而得到AD=BE,∠CAD=∠CBE,再根据对顶角相等,即可得到∠AFB=∠ACB=90°.【题目详解】解:AD=BE,AD⊥BE,理由如下:∵△ABC和△CDE都是等腰直角三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=90°,∴△ACD≌△BCE(SAS)∴AD=BE,∠CAD=∠CBE,∵∠ADC=∠BDF∴∠AFB=∠ACB=90°,∴AD⊥BE∴AD=BE,AD⊥BE.【题目点拨】本题考查了全等三角形的判定及性质,解题的关键是充分利用已知条件,熟练掌握全等三角形的判定定理.24、(1)是等腰三角形;(2)1【解题分析】试题分析:(1)根据翻折不变性和平行线的性质得到两个相等的角,根据等角对等边即可判断△BEF是等腰三角形;(2)根据翻折的性质可得BE=DE,BG=CD,∠EBG=∠ADC=90°,设BE=DE=x,表示出AE=8-x,然后在Rt△ABE中,利

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论