




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省淮安淮安区五校联考2024届八上数学期末统考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,则∠BAE的度数为何?()A.115 B.120 C.125 D.1302.如图,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则()A.∠1=∠EFD B.BE=EC C.BF=DF=CD D.FD∥BC3.如图,射线平分角,于点,于点,若,则()A. B. C. D.4.河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是05.在一次数学课上,张老师出示了一道题的已知条件:如图四边形ABCD中,AD=CD,AB=CB,要求同学们写出正确结论.小明思考后,写出了四个结论如下:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=AC•BD;④线段BD,AC互相平分,其中小明写出的结论中正确的有()个A.1 B.2C.3 D.46.下列几组数中,为勾股数的是()A.4,5,6 B.12,16,18C.7,24,25 D.0.8,1.5,1.77.如图,△ABC中,AB=10,BC=12,AC=,则△ABC的面积是().A.36 B. C.60 D.8.下列各数组中,不是勾股数的是()A.5,12,13 B.7,24,25C.8,12,15 D.3k,4k,5k(k为正整数)9.如果数据x1,x2,…,xn的方差是3,则另一组数据2x1,2x2,…,2xn的方差是()A.3 B.6 C.12 D.510.如图,△ABC中,∠C=90°,ED垂直平分AB,若AC=12,EC=5,且△ACE的周长为30,则BE的长为()A.5 B.10 C.12 D.13二、填空题(每小题3分,共24分)11.在函数y=2x+1中,自变量12.如图,某风景区的沿湖公路AB=3千米,BC=4千米,CD=12千米,AD=13千米,其中AB^BC,图中阴影是草地,其余是水面.那么乘游艇游点C出发,行进速度为每小时11千米,到达对岸AD最少要用小时.13.今天数学课上,老师讲了单项式乘以多项式,放学回到家,小明拿出课堂笔记本复习,发现一道题:-3xy(4y-2x-1)=-12xy2+6x2y+□,□的地方被墨水弄污了,你认为□处应填写_________.14.已知一次函数y=kx﹣4(k<0)的图象与两坐标轴所围成的三角形的面积等于8,则该一次函数表达式为_____.15.分解因式:____________.16.若代数式的值为零,则=____.17.某公司测试自动驾驶技术,发现移动中汽车“”通信中每个数据包传输的测量精度大约为0.0000018秒,请将数据0.0000018用科学计数法表示为__________.18.若分式的值为0,则x的值是_________.三、解答题(共66分)19.(10分)某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:甲7886748175768770759075798170748086698377乙9373888172819483778380817081737882807040整理、描述数据按如下分数段整理、描述这两组样本数据:成绩人数部门40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100甲0011171乙(说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格,60分以下为生产技能不合格)分析数据两组样本数据的平均数、中位数、众数如下表所示:部门平均数中位数众数甲78.377.575乙7880.581得出结论:.估计乙部门生产技能优秀的员工人数为____________;.可以推断出_____________部门员工的生产技能水平较高,理由为_____________.(至少从两个不同的角度说明推断的合理性)20.(6分)如图,在△ABC中,AB=AC,AD是角平分线,点E在AD上,请写出图中两对全等三角形,并选择其中的一对加以证明.21.(6分)如图,在平面直角坐标系中,的三个顶点坐标分别为,,.(1)在图中画出关于轴对称的;(2)通过平移,使移动到原点的位置,画出平移后的.(3)在中有一点,则经过以上两次变换后点的对应点的坐标为.22.(8分)解答下列各题:(1)计算:(2)分解因式:.23.(8分)计算:(1)(2)24.(8分)如图,在等腰直角中,,是线段上一动点(与点、不重合),连结,延长至点,,过点作于点,交于点.(1)若,求的大小(用含的式子表示);(2)用等式表示与之间的数量关系,并加以证明.25.(10分)“黄金8号”玉米种子的价格5元/kg,如果一次购买10kg以上的种子,超过10kg部分的种子价格打8折.(1)购买8kg种子需付款元;购买13kg种子需付款元.(2)设购买种子x(x>10)kg,付款金额为y元,写出y与x之间的函数关系式.(3)张大爷第一次买了6kg种子,第二次买了9kg种子.如果张大爷一次性购买种子,会少花多少钱?26.(10分)计算:(1)(+)()+2;(2).
参考答案一、选择题(每小题3分,共30分)1、C【解题分析】分析:根据全等三角形的判定和性质得出△ABC与△AED全等,进而得出∠B=∠E,利用多边形的内角和解答即可.详解:∵三角形ACD为正三角形,∴AC=AD,∠ACD=∠ADC=∠CAD=60°,∵AB=DE,BC=AE,∴△ABC≌△DEA,∴∠B=∠E=115°,∠ACB=∠EAD,∠BAC=∠ADE,∴∠ACB+∠BAC=∠BAC+∠DAE=180°﹣115°=65°,∴∠BAE=∠BAC+∠DAE+∠CAD=65°+60°=125°,故选C.点睛:此题考查全等三角形的判定和性质,关键是根据全等三角形的判定和性质得出△ABC与△AED全等.2、D【解题分析】由SAS易证△ADF≌△ABF,根据全等三角形的对应边相等得出∠ADF=∠ABF,又由同角的余角相等得出∠ABF=∠C,则∠ADF=∠C,根据同位角相等,两直线平行,得出FD∥BC.解:在△ADF与△ABF中,
∵AF=AF,∠1=∠2,AD=AB,
∴△ADF≌△ABF,
∴∠ADF=∠ABF,
又∵∠ABF=∠C=90°-∠CBF,
∴∠ADF=∠C,
∴FD∥BC.
故选B.
3、C【分析】根据题意可知A、B、O、M四点构成了四边形,且有两个角是直角,直接利用四边形的内角和即可求解.【题目详解】解:∵于点,于点,,,;故选:C.【题目点拨】本题考查的是四边形的内角和,这里要注意到构造的是90°的角即可求解本题.4、B【解题分析】分析:直接利用方差的意义以及平均数的求法和中位数、众数的定义分别分析得出答案.详解:A、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%,故中位数是:15.3%,故此选项错误;B、众数是15.3%,正确;C、(15.3%+12.7%+15.3%+14.5%+17.1%)=14.98%,故选项C错误;D、∵5个数据不完全相同,∴方差不可能为零,故此选项错误.故选:B.点睛:此题主要考查了方差的意义以及平均数的求法和中位数、众数的定义,正确把握相关定义是解题关键.5、C【分析】根据全等三角形的判定定理、垂直平分线的判定及定义和三角形的面积公式逐一判断即可.【题目详解】解:在△ABD和△CBD中∴△ABD≌△CBD,故①正确;∵AD=CD,AB=CB,∴点D和点B都在AC的垂直平分线上∴BD垂直平分AC∴AC⊥BD,故②正确;∴S四边形ABCD=S△DAC+S△BAC=AC·DO+AC·BO=AC·(DO+BO)=AC•BD,故③正确;无法证明AD=AB∴AC不一定垂直平分BD,故④错误.综上:正确的有3个故选C.【题目点拨】此题考查的是全等三角形的判定定理、垂直平分线的判定及定义和三角形的面积公式,掌握全等三角形的判定定理、垂直平分线的判定及定义和三角形的面积公式是解决此题的关键.6、C【分析】根据勾股数的定义:满足的三个正整数,称为勾股数解答即可.【题目详解】解:A、42+52≠62,不是勾股数;B、122+162≠182,不是勾股数;C、72+242=252,是勾股数;D、0.82+1.52=1.72,但不是正整数,不是勾股数.故选:C.【题目点拨】本题考查勾股数,解题的关键是掌握勾股数的定义,特别注意这三个数除了要满足,还要是正整数.7、A【分析】作于点D,设,得,,结合题意,经解方程计算得BD,再通过勾股定理计算得AD,即可完成求解.【题目详解】如图,作于点D设,则∴,∴∵AB=10,AC=∴∴∴∴△ABC的面积故选:A.【题目点拨】本题考察了直角三角形、勾股定理、一元一次方程的知识,解题的关键是熟练掌握勾股定理的性质,从而完成求解.8、C【分析】验证两个较小数的平方和是否等于最大数的平方即可.【题目详解】解:A、52+122=132,是勾股数,故错误;B、72+242=252,是勾股数,故错误;C、82+122≠152,不是勾股数,故正确;D、(3k)2+(4k)2=(5k)2,是勾股数,故错误.故选:C.【题目点拨】本题考查了勾股数的定义:可以构成一个直角三角形三边的一组正整数.9、C【解题分析】根据题意,数据x1,x2,…,xn的平均数设为a,则数据2x1,2x2,…,2xn的平均数为2a,再根据方差公式进行计算:即可得到答案.【题目详解】根据题意,数据x1,x2,…,xn的平均数设为a,则数据2x1,2x2,…,2xn的平均数为2a,根据方差公式:=3,则==4×=4×3=12,故选C.【题目点拨】本题主要考查了方差公式的运用,关键是根据题意得到平均数的变化,再正确运用方差公式进行计算即可.10、D【分析】ED垂直平分AB,BE=AE,在通过△ACE的周长为30计算即可【题目详解】解:∵ED垂直平分AB,∴BE=AE,∵AC=12,EC=5,且△ACE的周长为30,∴12+5+AE=30,∴AE=13,∴BE=AE=13,故选:D.【题目点拨】本题考查了线段的垂直平分线的性质,熟知线段垂直平分线上的点到线段两端点的距离相等是解答此题的关键.二、填空题(每小题3分,共24分)11、x【题目详解】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数可知,要使2x+112、0.1【分析】连接AC,在直角△ABC中,已知AB,BC可以求AC,根据AC,CD,AD的长度符合勾股定理确定AC⊥CD,则可计算△ACD的面积,又因为△ACD的面积可以根据AD边和AD边上的高求得,故根据△ACD的面积可以求得C到AD的最短距离,即△ACD中AD边上的高.【题目详解】解:连接AC,在直角△ABC中,AB=3km,BC=1km,则AC==5km,∵CD=12km,AD=13km,故存在AD2=AC2+CD2∴△ACD为直角三角形,且∠ACD=90°,∴△ACD的面积为×AC×CD=30km2,∵AD=13km,∴AD边上的高,即C到AD的最短距离为km,游艇的速度为11km/小时,需要时间为小时=0.1小时.故答案为0.1.点睛:
本题考查了勾股定理在实际生活中的应用,考查了直角三角形面积计算公式,本题中证明△ACD是直角三角形是解题的关键.13、3xy【解题分析】试题解析:根据题意,得故答案为14、y=﹣x﹣1【分析】先求出直线与坐标轴的交点坐标,再根据三角形的面积公式列出方程,求得k值,即可.【题目详解】令x=0,则y=0﹣1=﹣1,令y=0,则kx﹣1=0,x=,∴直线y=kx﹣1(k<0)与坐标轴的交点坐标为A(0,﹣1)和B(,0),∴OA=1,OB=-,∵一次函数y=kx﹣1(k<0)的图象与两坐标轴所围成的三角形的面积等于8,∴,∴k=﹣1,∴一次函数表达式为:y=﹣x﹣1.故答案为:y=﹣x﹣1.【题目点拨】本题主要考查求一次函数的解析式,掌握一次函数图象与坐标轴的交点坐标求法,是解题的关键.15、【分析】先提取公因式,再用公式法完成因式分解.【题目详解】原式【题目点拨】第一步,提取公因式;第二步,公式法;第三步,十字相乘法;三项以上的多项式的因式分解一般是分组分解.16、-2【分析】代数式的值为零,则分子为0,且代数有意义,求出x的值即可.【题目详解】代数式的值为零,则分子为0,及,解得,代数式有意义,则,解得:,则x=-2,故答案为-2.【题目点拨】本题是对代数式综合的考查,熟练掌握一元二次方程解法及二次根式知识是解决本题的关键.17、【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】.
故答案为:.【题目点拨】本题考查用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.18、1.【分析】直接利用分式为零的条件分析得出答案.【题目详解】∵分式的值为0,∴x1﹣1x=0,且x≠0,解得:x=1.故答案为1.【题目点拨】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.三、解答题(共66分)19、a.240,b.乙;理由见解析.【解题分析】试题分析:(1)由表可知乙部门样本的优秀率为:,则整个乙部门的优秀率也是,因此即可求解;(2)观察图表可得出结论.试题解析:如图:整理、描述数据按如下分数段整理按如下分数段整理数据:成绩人数部门甲0011171乙1007102a.估计乙部门生产技能优秀的员工人数为400×=240(人);b.答案不唯一,言之有理即可.可以推断出甲部门员工的生产技能水平较高,理由如下:①甲部门生产技能测试中,测试成绩的平均数较高,表示甲部门生产技能水平较高;②甲部门生产技能测试中,没有生产技能不合格的员工.可以推断出乙部门员工的生产技能水平较高,理由如下:①乙部门生产技能测试中,测试成绩的中位数较高,表示乙部门生产技能水平优秀的员工较多;②乙部门生产技能测试中,测试成绩的众数较高,表示乙部门生产技能水平较高.20、△ABE≌△ACE,△EBD≌△ECD,△ABD≌△ACD.以△ABE≌△ACE为例,证明见解析【解题分析】分析:由AB=AC,AD是角平分线,即可利用(SAS)证出△ABD≌△ACD,同理可得出△ABE≌△ACE,△EBD≌△ECD.本题解析:△ABE≌△ACE,△EBD≌△ECD,△ABD≌△ACD.以△ABE≌△ACE为例,证明如下:∵AD平分∠BAC,∴∠BAE=∠CAE.在△ABE和△ACE中,,∴△ABE≌△ACE(SAS).点睛:本题考查了等三角形的性质及全等三角形的判定,解题的关键是熟掌握全等三角形的判定定理.本题属于基础题,难度不大,解决该题型题目时,根据相等的边角关系利用全等三角形的判定定理证出结论是三角形全等是关键.21、(1)图见解析;(2)图见解析;(3)【分析】(1)先分别找到A、B、C关于x轴的对称点,然后连接、、即可;(2)先判断移动到原点的位置时的平移规律,然后分别将、按此规律平移,得到、,连接、、即可;(3)根据关于x轴对称的两点坐标关系:横坐标相同,纵坐标互为相反数即可得到,然后根据(2)中的平移规律即可得到的坐标.【题目详解】解:(1)先分别找到A、B、C关于x轴的对称点,然后连接、、,如下图所示:即为所求(2)∵∴∴到点O(0,0)的平移规律为:先向左平移4个单位,再向上平移2个单位分别将、按此规律平移,得到、,连接、、,如图所示,即为所求;(3)由(1)可知,经过第一次变化后为然后根据(2)的平移规律,经过第二次变化后为故答案为:.【题目点拨】此题考查的是画已知图形关于x轴对称的图形、平移后的图形、点的对称规律和平移规律,掌握关于x轴对称图形画法、平移后的图形画法、关于x轴对称两点坐标规律和坐标的平移规律是解决此题的关键.22、(1);(2)【分析】(1)利用完全平方公式及平方差公式进行计算即可;(2)先提取公因式,然后利用完全平方公式进一步因式分解即可.【题目详解】(1)==;(2)==.【题目点拨】本题主要考查了整式的混合运算与因式分解,熟练掌握相关公式是解题关键.23、(1)3-2;(2)4.5【解题分析】(1)按二次根式的相关运算法则结合绝对值的意义进行计算即可;(2)按实数的相关运算法则计算即可.【题目详解】解:(1)原式==(2)原式==4.524、(1)∠AMQ=45°+;(2),证明见解析.【分析】(1)由等腰直角三角形的性质得出∠BAC=∠B=45°,∠PAB=45°﹣α,由直角三角形的性质即可得出结论;(2)连接AQ,作ME⊥QB,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山东水利职业学院《网络传播》2023-2024学年第二学期期末试卷
- 2025届四川省峨眉山市达标名校初三冲刺模拟(4)物理试题含解析
- 2024-2025学年鄂东南示范高中教改联盟高中毕业班第二次诊断性检侧(语文试题文)试题含解析
- 山大附属中学2025届高中三年级学业水平考试生物试题含解析
- 广州东华职业学院《机械零件测绘》2023-2024学年第二学期期末试卷
- 四川省绵阳市高中2024-2025学年下学期高三联考英语试题含解析
- 天津工艺美术职业学院《世界儿童文学选读》2023-2024学年第一学期期末试卷
- 伊春职业学院《流体力学及其工程应用》2023-2024学年第二学期期末试卷
- 开封县2025年数学四年级第二学期期末达标检测试题含解析
- 2024-2025学年山西省高平市建宁初级中学下学期高三生物试题1月阶段测试考试试卷含解析
- 2024年电子商务师真题试题及答案
- 园艺植物遗传育种 课件全套 第1-10章 绪论-新品种的审定与推广繁育+实训
- 2025-2030中国免洗护发素行业市场发展趋势与前景展望战略研究报告
- 《智能优化算法解析》 课件 第6章-基于群智能的智能优化算法
- 《红岩》中考试题(截至2024年)
- 华为IAD132E(T)开局指导书
- (2025)二十大知识竞赛题库(含答案)
- 2025年华北电力大学辅导员及其他岗位招考聘用54人高频重点提升(共500题)附带答案详解
- 2022《信访工作条例》学习课件
- 2025年高考政治一轮复习知识清单选择性必修一《当代国际政治与经济》重难点知识
- 儿童青少年肥胖食养指南(2024年版)
评论
0/150
提交评论