




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省江油实验学校2024届八上数学期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.定义运算“⊙”:,若,则的值为()A. B.或10 C.10 D.或2.下列四个图案中,是轴对称图形的是()A. B. C. D.3.若点与点关于原点成中心对称,则的值是()A.1 B.3 C.5 D.74.已知为整数,且分式的值为整数,则满足条件的所有整数的和是()A.-4 B.-5 C.1 D.35.如图,在∠AOB的两边上,分别取OM=ON,再分别过点M、N作OA、OB的垂线,交点为P,画射线OP,则OP平分∠AOB的依据是()A.HL B.SAS C.AAS D.SSS6.华为手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为().A. B. C. D.7.小明上月在某文具店正好用20元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜1元,结果小明只比上次多用了4元钱,却比上次多买了2本.若设他上月买了x本笔记本,则根据题意可列方程()A.-=1 B.-=1C.-=1 D.-=18.如图,能判定EB∥AC的条件是()A.∠C=∠1 B.∠A=∠2C.∠C=∠3 D.∠A=∠19.如图,∠C=90°,AD平分∠BAC,DE⊥AB于点E,有下列结论:①CD=ED;②AC+BE=AB;③DA平分∠CDE;④∠BDE=∠BAC;⑤=AB:AC,其中结论正确的个数有()A.5个 B.4个C.3个 D.2个10.下列运算错误的是()A. B. C. D.二、填空题(每小题3分,共24分)11.若,,则__________________.12.医学研究发现一种新病毒的直径约为0.000043毫米,这个数0.000043用科学记数法表为______________.13.直角三角形两直角边长分别为5和12,则它斜边上的高为____________14.如图,点B、F、C、E在一条直线上,已知BF=CE,AC∥DF,请你添加一个适当的条件______,使得△ABC≌△DEF.15.如图,,平分,过作交于于点,若点在射线上,且满足,则的度数为_________.16.如图,在△ABC中,AB=AC,∠ABM=∠CBN,MN=BN,则∠MBC的度数为_________°.17.在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,以PB为边作等边△PBM,则线段AM的长最大值为_____.18.如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是_____三、解答题(共66分)19.(10分)对于两个不相等的实数心、,我们规定:符号表示、中的较大值,如:.按照这个规定,求方程(为常数,且)的解.20.(6分)已知:△ABC中,BO平分∠ABC,CO平分∠ACB(1)如图1,∠BOC和∠A有怎样的数量关系?请说明理由(2)如图2,过O点的直线分别交△ABC的边AB、AC于E、F(点E不与A,B重合,点F不与A、C重合),BP平分外角∠DBC,CP平分外角∠GCB,BP,CP相交于P.求证:∠P=∠BOE+∠COF;(3)如果(2)中过O点的直线与AB交于E(点E不与A、B重合),与CA的延长线交于F在其它条件不变的情况下,请直接写出∠P、∠BOE、∠COF三个角之间的数量关系.21.(6分)已知:是等边三角形,D是直线BC上一动点,连接AD,在线段AD的右侧作射线DP且使∠ADP=30°,作点A关于射线DP的对称点E,连接DE、CE.(1)当点D在线段BC上运动时,如图,请用等式表示线段AB、CE、CD之间的数量关系,并证明;(2)当点D在直线BC上运动时,请直接写出AB、CE、CD之间的数量关系,不需证明.22.(8分)数学课上,老师给出了如下问题:已知:如图1,在Rt△ABC中,∠C=90°,AC=BC,延长CB到点D,∠DBE=45°,点F是边BC上一点,连结AF,作FE⊥AF,交BE于点E.(1)求证:∠CAF=∠DFE;(2)求证:AF=EF.经过独立思考后,老师让同学们小组交流.小辉同学说出了对于第二问的想法:“我想通过构造含有边AF和EF的全等三角形,又考虑到第(1)题中的结论,因此我过点E作EG⊥CD于G(如图2所示),再证明Rt△ACF和Rt△FGE全等,问题就解决了.”你同意小辉的方法吗?如果同意,请给出证明过程;不同意,请给出理由;(3)小亮同学说:“按小辉同学的思路,我还可以有其他添加辅助线的方法.”请你顺着小亮同学的思路在图3中继续尝试,并完成证明.23.(8分)某火车站北广场将于2019年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵.(1)A,B两种花木的数量分别是多少课;(2)如果园林处安排13人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?24.(8分)某超市用1200元购进一批甲玩具,用800元购进乙玩具,所购甲玩具件数是乙玩具件数的,已知甲玩具的进货单价比乙玩具的进货单价多1元.要求:根据上述条件,提出相关问题,并利用所学知识进行解答.25.(10分)如图所示的方格纸中,每个小方格的边长都是1,点A(﹣4,1)B(﹣3,3)C(﹣1,2)(1)作△ABC关于y轴对称的△A′B′C′;(2)在x轴上找出点P,使PA+PC最小,并直接写出P点的坐标.26.(10分)(1)如图,∠1=∠2,∠3=∠4,求证:AC=AD(2)化简:
参考答案一、选择题(每小题3分,共30分)1、B【分析】已知等式利用题中的新定义分类讨论,计算即可求出的值.【题目详解】当时,,即:解得:;经检验是分式方程的解;当时,,即,解得:;经检验是分式方程的解;故答案为:或故选:B【题目点拨】本题考查了解分式方程,熟练掌握运算法则是解本题的关键,注意检验.2、C【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【题目详解】A、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;B、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意.故答案为:C.【题目点拨】本题考查了轴对称图形,掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3、C【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【题目详解】解:∵点与点关于原点对称,∴,,解得:,,则故选C.【题目点拨】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.4、B【分析】先把分式进行化简,然后根据分式的值为整数,得到能被2整除,然后求出的值,再结合,即可得到的值,即可得到答案.【题目详解】解:∵,又∵为整数,且分式的值为整数,∴能被2整除,∴或或或;∴或或1或0;∵,∴,∴或或0;∴满足条件的所有整数的和是:;故选:B.【题目点拨】本题考查了分式的值,分式的化简,解题的关键是熟练掌握分式的运算法则进行解题,注意分式的分母不能等于0.5、A【分析】利用判定方法“HL”证明Rt△OMP和Rt△ONP全等,进而得出答案.【题目详解】解:在Rt△OMP和Rt△ONP中,
,
∴Rt△OMP≌Rt△ONP(HL),
∴∠MOP=∠NOP,
∴OP是∠AOB的平分线.
故选择:A.【题目点拨】本题考查了全等三角形的应用以及基本作图,熟练掌握三角形全等的判定方法并读懂题目信息是解题的关键.6、D【分析】由科学记数法知;【题目详解】解:;故选D.【题目点拨】本题考查科学记数法;熟练掌握科学记数法中与的意义是解题的关键.7、B【解题分析】试题解析:设他上月买了x本笔记本,则这次买了(x+2)本,根据题意得:,即:.故选B.考点:分式方程的应用.8、D【分析】直接根据平行线的判定定理对各选项进行逐一分析即可.【题目详解】解:A、∠C=∠1不能判定任何直线平行,故本选项错误;
B、∠A=∠2不能判定任何直线平行,故本选项错误;
C、∠C=∠3不能判定任何直线平行,故本选项错误;
D、∵∠A=∠1,∴EB∥AC,故本选项正确.
故选:D.【题目点拨】本题考查的是平行线的判定,用到的知识点为:内错角相等,两直线平行.9、A【分析】由在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E.可得CD=DE,继而可得∠ADC=∠ADE,又由角平分线的性质,证得AE=AD,由等角的余角相等,可证得∠BDE=∠BAC,由三角形的面积公式,可证得S△ABD:S△ACD=AB:AC.【题目详解】解:∵在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,
∴CD=ED,
故①正确;
∴∠CDE=90°−∠BAD,∠ADC=90°−∠CAD,
∴∠ADE=∠ADC,
即AD平分∠CDE,
故④正确;
∴AE=AC,
∴AB=AE+BE=AC+BE,
故②正确;
∵∠BDE+∠B=90°,∠B+∠BAC=90°,
∴∠BDE=∠BAC,
故③正确;
∵S△ABD=AB•DE,S△ACD=AC•CD,
∵CD=ED,
∴S△ABD:S△ACD=AB:AC,
故⑤正确.综上所述,结论正确的是①②③④⑤共5个
故答案为A.【题目点拨】本题考查了角平分线的性质.难度适中,注意掌握数形结合思想的应用.10、A【分析】根据同类二次根式的合并,二次根式的乘除法则,分别进行各选项的判断即可.【题目详解】解:A、与不是同类二次根式,不能直接合并,故本选项正确;B、×=,计算正确,故本选项错误;C、÷=,计算正确,故本选项错误;D、(-)2=2,计算正确,故本选项错误;故选A.【题目点拨】本题考查了二次根式的加减及乘除运算,解答本题的关键是掌握二次根式的加减及乘除法则.二、填空题(每小题3分,共24分)11、1【分析】逆用同底数幂的乘法、幂的乘方法则即可解题.【题目详解】解:.故答案为:1.【题目点拨】本题考查了同底数幂的乘法法则、幂的乘方(逆用),熟练掌握同底数幂的乘法、幂的乘方法则是解题关键.12、4.3×10-5【解题分析】解:0.000043=.故答案为.13、【分析】先用勾股定理求出斜边长,然后再根据直角三角形面积的两种公式求解即可.【题目详解】∵直角三角形的两直角边长分别为5和12,∴斜边长=∵直角三角形面积S=×5×12=×13×斜边的高,∴斜边的高=.故答案为:.【题目点拨】本题考查勾股定理及直角三角形面积,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.14、∠A=∠D(答案不唯一)【解题分析】试题解析:添加∠A=∠D.理由如下:∵FB=CE,∴BC=EF.又∵AC∥DF,∴∠ACB=∠DFE.∴在△ABC与△DEF中,,∴△ABC≌△DEF(AAS).考点:全等三角形的判定.15、或【分析】如图所示符合题目条件的有F,F′两种情况,当在点F位置时,可证的△BFD≌△BED,根据,即可得出∠BED=∠DFB=130°,当在点F′时,FD=DF′,根据第一种情况即可求解.【题目详解】解:如图所示当在点F位置时∵平分,由图形的对称性可知△BFD≌△BED∴∠BED=∠DFB∵,∴∴∠BED=∠DFB=130°当在点F′时由①知,FD=DF′,∠DFA=∠FF′D=50°综上所述:的度数为或故答案为:或.【题目点拨】本题主要考查的是等腰三角形的判定及其性质定理的应用问题,灵活运用有关定理来分析、判定、推理和解答是解题的关键.16、1【分析】可设∠ABM=∠CBN=α,∠MBN=∠BMN=β,利用三角形外角的性质,得出β=α+∠A,而∠C=∠ABC=2α+β,结合三角形内角和定理可求出β+α=1°,即可得出∠MBC的度数.【题目详解】解:设∠ABM=∠CBN=α,
∵BN=MN,可设∠MBN=∠BMN=β,
∵∠BMN是△ABM的外角,
∴∠BMN=α+∠A,
即β=α+∠A,∴∠A=β-α,
∵AB=AC,
∴∠ABC=∠C=2α+β,
∵∠A+∠B+∠C=180°,∴β-α+2(2α+β)=180°,
∴β+α=1°,∴∠MBC=β+α=1°.故答案为:1.【题目点拨】本题利用了三角形内角和定理、等腰三角形的性质、三角形外角的性质.注意解此题可设出未知数,表示角的时候比较容易计算.17、1.【题目详解】如图,当点P在第一象限内时,将三角形APM绕着P点旋转60°,得DPB,连接AD,则DP=AP,∠APD=60°,AM=BD,ADP是等边三角形,所以BDAD+AB可得,当D在BA延长线上时,BD最长,点D与O重合,又点A的坐标为(2,0),点B的坐标为(1,0),AB=3,AD=AO=2,BD=AD+AB=1=AM,即线段AM的长最大值为1;当点P在第四象限内时,同理可得线段AM的长最大值为1.所以AM最大值是1.故答案为1.18、1【分析】根据角平分线的性质可得,点P到AB的距离=PE=1.【题目详解】解:∵P是∠BAC的平分线AD上一点,PE⊥AC于点E,PE=1,
∴点P到AB的距离=PE=1.
故答案为:1.【题目点拨】本题主要考查角平分线的性质:角的平分线上的点到角的两边的距离相等.三、解答题(共66分)19、x=﹣1或【分析】利用题中的新定义,分a<3与a>3两种情况求出方程的解即可.【题目详解】当a<3时,,即去分母得,2x-1=3x解得:x=﹣1经检验x=﹣1是分式方程的解;当a>3时,,即去分母得,2x-1=ax解得:经检验是分式方程的解.【题目点拨】本题主要考查解分式方程,关键是掌握解分式方程的步骤:去分母、解方程、验根、得出结论.20、(1)∠BOC=90°+∠A,理由详见解析;(2)详见解析;(3)∠BOE+∠COF﹣∠P=180°.【分析】(1)根据三角形的内角和等于180°求出∠ABC+∠ACB的度数,再根据角平分线的定义求出∠OBC+∠OCB的度数,然后利用三角形的内角和等于180°列式计算即可得解;(2)证明∠P=90°﹣∠A,得到∠P+∠BOC=180°即可解决问题;(3)画出图形由∠P+∠BOC=180°,∠BOC+∠BOE+∠COF=360°,可得∠BOE+∠COF﹣∠P=180°.【题目详解】解:(1)∵∠ABC+∠ACB=180°﹣∠A,BO平分∠ABC,CO平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A)=90°﹣∠A,在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=90°+∠A;(2)∵BP、CP分别平分外角∠DBC、∠GCB,∴∠PBC=∠CBD,∠PCB=∠BCG,∴∠P=180°﹣∠CBP﹣∠BCP)=180°﹣(∠CBD+∠BCG)=180°﹣(∠A+∠ACB+∠A+∠ABC)=180°﹣(180°+∠A)=90°﹣∠A,∴∠P+∠BOC=180°,∵∠BOC+∠BOE+∠COF=180°,∴∠P=∠BOE+∠COF;(3)如图3中,∵∠P+∠BOC=180°,∠BOC+∠BOE+∠COF=360°,∴∠BOE+∠COF﹣∠P=180°.【题目点拨】本题考查三角形内角和定理,三角形外角的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21、(1)AB=CE+CD,见解析;(2)当点D在线段CB上时,AB=CE+CD;当点D在CB的延长线上时,AB=CD-CE,当点D在BC延长线上时,AB=CE-CD.【分析】(1)由对称可得DP垂直平分AE,则AD=DE,由∠ADP=30°可得△ADE是等边三角形,进而可得△ABC是等边三角形,可得AB=AC=BC,∠BAC=60°,进而可得∠BAD=∠CAE,由SAS可得△BAD≌△CAE,得BD=CE,进而可证得结论;(2)数量关系又三种,可分三种情况讨论:①当点D在线段BC上时,(1)中已证明;②当点D在CB的延长线上时,如图所示,易知△ADE是等边三角形,可得AD=AE,,由△ABC是等边三角形,可得AB=AC=BC,∠BAC=60°,进而可得∠BAD=∠CAE,由SAS可得△BAD≌△CAE,可得BD=CE,进而可得此种情况的结论;③当点D在BC延长线上时,如图所示,易知△ADE是等边三角形,可得AD=AE,,由△ABC是等边三角形,可得AB=AC=BC,∠BAC=60°,进而可得∠BAD=∠CAE,由SAS可得△BAD≌△CAE,可得BD=CE,进而可得此种情况的结论.【题目详解】解:(1)AB=CE+CD证明:∵点A关于射线DP的对称点为E,∴DP垂直平分AE,∴AD=DE,又∵∠ADP=30°,∴∠ADE=60°,∴△ADE是等边三角形,∴AD=AE,∠DAE=∠ADE=60°,又∵△ABC是等边三角形,∴AB=AC=BC,∠BAC=60°,∴∠BAC-∠DAC=∠DAE-∠DAC,即:∠BAD=∠CAE,在△BAD和△CAE中,∴△BAD≌△CAE,∴BD=CE,∴AB=BC=BD+CD=CE+CD;(2)AB=CE+CD,AB=CE-CD,AB=CD-CE.①当点D在线段BC上时,AB=CE+CD,证明过程为(1);②当点D在CB的延长线上时,如下图所示,AB=CD-CE,证明过程如下:由(1)得,△ADE是等边三角形,∴AD=AE,,又∵△ABC是等边三角形,∴AB=AC=BC,∠BAC=60°,∴∠BAC-∠BAE=∠DAE-∠BAE,即:∠BAD=∠CAE,在△BAD和△CAE中,∴△BAD≌△CAE,∴BD=CE,∴AB=BC=CD-BD=CD-CE;③当点D在BC延长线上时,如图所示,AB=CE-CD,证明过程如下:由(1)得,△ADE是等边三角形,∴AD=AE,,又∵△ABC是等边三角形,∴AB=AC=BC,∠BAC=60°,∴∠BAC+∠DAC=∠DAE+∠DAC,即:∠BAD=∠CAE,在△BAD和△CAE中,∴△BAD≌△CAE,∴BD=CE,∴AB=BC=BD-CD=CE-CD;【题目点拨】本题主要考查三角形全等的判定和性质,根据题目条件作出正确的图形找出全等的三角形是解题的关键.22、(1)见解析;(2)不同意小辉的方法,理由见解析;(3)见解析【分析】(1)依据“同角的余角相等”,即可得到∠CAF=∠DFE;(2)不同意小辉的方法,理由是两个三角形中只有两个角对应相等无法判定其是否全等;(3)在AC上截取AG=BF,连结FG,依据ASA即可判定△AGF≌△FBE,进而得出AF=EF.【题目详解】解:证明:(1)∵∠C=90°,∴∠CAF+∠AFC=90°.∵FE⊥AF,∴∠DFE+∠AFC=90°.∴∠CAF=∠DFE.(2)不同意小辉的方法,理由:根据已知条件,两个三角形中只有两个角对应相等即∠CAF=∠DFE和∠C=∠EGF=90°,没有对应边相等,故不能判定两个三角形全等.(3)如图3,在AC上截取AG=BF,连结FG,∵AC=BC,∴AC﹣AG=BC﹣BF,即CG=CF.∵∠C=90°,∴△CGF为等腰直角三角形,∴∠CGF=∠CFG=45°.∴∠AGF=180°﹣∠CGF=135°.∵∠DBE=45°,∴∠FBE=180°﹣∠DBE=135°.∴∠AGF=∠FBE.在△AGF和△FBE中:∴△AGF≌△FBE(ASA).∴AF=EF.【题目点拨】此题主要考查了等腰直角三角形的性质和判定,全等三角形的性质和判定,解本题的关键是在AC上截取AG=BF,构造辅助线后证明△AGE≌△FBE.23、(1)A种花木的数量是4200棵,B种花木的数量是2400棵;(2)安排种植A花木的7人,种植B花木的6人,可以确保同时完成各自的任务.【分析】(1)根据在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵可以列出相应的二元一次方程组,从而可以解答本题;
(2)根据安排13人同时种植这两种花木
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《智谋物流管理》课件
- 铁道机车专业教学郑州铁路单绍平35课件
- 铁道机车专业教学郑州铁路张中央70课件
- 天津海运职业于祯妮GroupTouristsBoardin
- 铁道概论授课崔桂兰64课件
- 铁路信号与通信设备接发列车工作90课件
- 中医文献课件
- 个人介绍课件
- 设备融资租赁合同样本
- 多式联运货物运输保险合同主要条款
- 贵州国企招聘2025贵州路桥集团有限公司招聘35人笔试参考题库附带答案详解
- 卫生管理行业人才培养与社会责任分析试题及答案
- DB32T 5082-2025建筑工程消防施工质量验收标准
- 2025年北京龙双利达知识产权代理有限公司招聘笔试参考题库含答案解析
- 2024-2025学年人教新版七年级下册数学期中复习试卷(含详解)
- 2025年中国BOD测试仪市场调查研究报告
- 2025克拉玛依机场第一季度招聘(15人)笔试参考题库附带答案详解
- 广东省阳江市阳东正雅学校等多校2024-2025学年高二下学期3月联考思想政治试题(含答案)
- 企业事故隐患内部报告奖励制度
- 生态学中的种间关系解析试题及答案
- 汽车发动机构造与维修试题
评论
0/150
提交评论