上海大学仪器分析化学英语版_第1页
上海大学仪器分析化学英语版_第2页
上海大学仪器分析化学英语版_第3页
上海大学仪器分析化学英语版_第4页
上海大学仪器分析化学英语版_第5页
已阅读5页,还剩179页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

InstrumentalAnalysisShanghaiUniversityContentsIntroductionIntroductiontoOpticalMethods

AtomicEmissionSpectroscopyAtomicAbsorptionSpectroscopy

TheAbsorptionofRadiation:UltravioletandVisible

MolecularLuminescence:FluorometryandphosphorimetryTheAbsorptionofRadiation:Infrared

IntroductiontoElectrochemicalMethods

Potentiometry

PolarographyIntroductiontoInterphaseSeparations

GasChromatographyLiquidChromatography

Chapter1

Introduction

DefinitionofInstrumentalAnalysisClassificationFunctionImportantConsiderations

1.1.The

DefinitionofInstrumental

Analysis

Thescienceandart

ofdeterminingthecompositionofmaterials

with

theinstrumentalmethods

basedon

aphysicalpropertycharacteristic

ofaparticularelementorcompound

ChemicalInformation

observableSignalbydeterminationof

physicalproperties1.2.

PhysicalPropertiesUsefulinInstrumentalAnalysis1.

InteractionofRadiantEnergywithMatter2.

ElectricalorElectrochemicalProperties3.

InterphaseSeparation4.Other

Properties

MechanicalProperties

ThermalProperties

NuclearProperties

ExtensiveProperties1.3.

ClassificationofMainInstrumentalMethods

1.

OpticalMethods

Atomic:

AbsorptionSpectroscopy, Emission,Spectroscopy FluorescenceSpectroscopy

Molecular:

UV-Vis.Spectrophotometry IRSpectroscopy2.

ElectrochemicalMethods Potentiometry Polarography Voltammetry3.

Chromatography GasChromatography LiquidChromatography1.4

BasicFunctionofInstrumentationSignalGeneratorsInputTransducersSignalTransformationModulesOutputTransducers1.5

MajorAreasofanInstrumentalMethodHowthemethod“works”AdvantagesandlimitationsofthemethodIllustrativeinstrumentationApplicationsProblemsBibliographyChapter2

IntroductiontoOpticalMethods

TheNatureofRadiantEnergySpectralRegionsInteractionofRadiationwithAtomandMoleculePracticalSourcesofRadiationSpectrographandMonochromator2.1

TheNatureofRadiantEnergyTheDualityofLight:WavepropertiesRefractionDiffractionReflectionScatteringVfrequency,Cvelocityoflight,wavelength,vwavenumber__(2.1)-Whereh

isPlanck’sconstant,h=6.6256×10-34J.s2.Particularproper(theEnergyofaphoton)(2.2)2.2

SpectralRegions2.3a

InteractionofRadiationwithAtoms

Emission

Atom(highexcitedstate)→Atom(lowerexcitedstate)+h

Absorption

Atom(groundstate)+h→Atom(highexcitedstate)Fluorescence

Atom(groundstate)+h→Atom(highexcitedstate)

Atom(lowerexcitedstate)+hF

2.3b

InteractionofRadiationwithMoleculesE(molecule)=Ee+Ev+ErE=E2—E1=hvAbsorptionM+hv→M*FluorescenceM+hv→M*→M+hv`2.4

Instrumentation

1.TheComponentsofaSpectrometer

⑴LightSource⑵Samplecell⑶PolychromatororMonochromator⑷Detector2.Atomicspectrometrysystem3.Dispersion

⑴ByaPrism

⑵ByaGratingGratingEquation

Where::blazeangle,nr:numberofgrooves/mm,:wavelength,m:gratingorder:incidentangle,:diffractedangle,Forablazedreflectiongrating(echelette)(2.3)(2.4)lineardispersionReciprocallineardispersionDrAngledispersionofagrating(2.5)(2.6)(2.7)ResolvingPowerBlazingrangeTheminimumpositioncorrespondstoanoptimumslitwidthWhere:wisdiameterofthelens,fisthefocallength.(2.8)(2.9)(2.10)4.ATypicalMonochromatorChapter3

AtomicEmissionSpectroscopy3.1.FundamentalsofAES

3.2.Instrumentation

3.3.AnalyticalMethodsofAES3.4.ControlofAnalyticalInterferences

3.1.FundamentalsofAES

AtomicEmissionProcesses3.2.Instrumentation1.Lightsource2.Spectrometer3.Detector4.ReadoutLightSourceTypeEva.Temp.Exci.Temp.stabilityApplication.DCArchighlowpoorQualitativeAnalysisACArcmidmidgoodQualitativeAnalysisSparklowhighestgoodQuantitativeAnalysisICPhighesthighbestQuantitativeAnalysisLightSourceProgressesSpectrometer⑴MonochromaterOptical-directReadSpectrometor⑵PolychromaterOptical-directReadSpectrometor3.Detector⑴Spectrograph⑵PhotomultiplierTube⑶Segmented-arrayCharge-CoupledDetector(SCD)ICP-AESInstrumentationSystemTwo-dimensionalarrayproducedbytheechellemountFig3-16SchemeofSCDDetector3.3AnalyticalMethodsofAES1.QualitativeAnalysis

⑴StandardIronSpectraComparison ⑵IndicateElementSpectraComparison ⑶DeterminationofLineWavelength

2.QuantitativeAnalysisQuantitativeFormula⑴theoreticalFormulaofAES(3.1)(3.2)(3.3)⑵LomakinFormula

⑶InternalStandardMethods

⑷StandardCalibrationMethods

(3.4)(3.5)(3.6)3.4.AnalyticalInterferences

SpectrumInterferenceBackgroundInterferenceMatrixInterference1.SpectrumInterference2.BackgroundInterference3.MatrixInterference3.5SensitivityandDetectionLimit1.Detectionlimit

(3.7)Chapter4

AtomicAbsorptionSpectroscopy4.1.TheoreticalConcepts4.2.AtomicAbsorption Instrumentation

4.3.GraphiteFurnaceAtomic Absorption

4.4.ControlofAnalytical Interferences

4.1.TheoreticalConceptsTheAtomicAbsorptionProcessTheoreticalConceptsQuantitativeAnalysisCharacteristicConcentrationDetectionLimits

TheAtomicAbsorptionProcessFig4-3GrotriandiagramsforNaFig4-2GrotriandiagramsforK2.TheoreticalConcepts

⑴IntegralFormulaofAAS

Fig4-4TypicalShapeofAAtomicAbsorptionlineIntegralAbsorptionFormula

ByatomictheoryByLineShapeFunction(theNaturedistribute)ThePeakAbsorptionCoefficientk0is:(4.1)(4.2)(4.3)⑵PeakAbsorptionTheory

byLambert-Beer’sLaw:(4.4)(4.5)(4.6)TheAbsorbanceis:Whenva>>ve,thenkv≈k0,(4.7)(4.8)(4.9)3.QuantitativeAnalysis(4.10)4.CharacteristicConcentration

The‘‘characteristicconcentration’’(sometimescalled‘‘sensitivity’’)isaconventionfordefiningthemagnitudeoftheabsorbancesignalwhichwillbeproducedbyagivenconcentrationofanalyte.Forflameatomicabsorption,thistermisexpressedastheconcentrationofanelementinmilligramsperliter(mg/L)requiredtoproducea1%absorption(0.0044absorbance)signal.(4.11)5.DetectionLimitHavingobtainedthedata,makethecalculationasfollows:Averagethetwoblankreadingstakenimmediatelybeforeandaftereachstandardandsubtractfromthestandardreading.2.Calculatethemeanandstandarddeviationforthesetofcorrectedhigh-standardreadings.Dothesameforthesetofcorrectedlowstandardreadings.3.Iftheratioofthemeansdoesnotcorrespondtotheratiooftheconcentrationpreparedtowithinstatisticalerror,rejectthedata.4.Ifthedatapasstheratio-of-the-meanstest,calculatethe concentrationdetectionlimitasfollows:(4.12)4.2.AtomicAbsorption

Instrumentation

1.PhotometersforAASANewTypePhotometerforAAS2.linesource(HollowCathodeLamp)Fig4-13HollowCathodeLampEmissionProcessFig4-143.AtomizerforAAS(Pre-MixBurnerSystem)

Fig4-19TreeTypeBurnerHeadfordifferentTypeFlame4.ControlofAnalyticalInterferencesIonizationInterferenceMatrixInterferenceChemicalInterferenceBackgroundInterferenceIonizationInterferenceMatrixInterferenceChemicalInterferenceTheMethodOfStandardAdditionsNo.SampleAddedmlStandardAddedmlConcentr.ofstandardmg/LLastConcentriationmg/L1Vx0CsVxVL2VsVx+CsVsVL32VsVx+2CsVsVL43VsVx+3CsVsVLBackgroundInterferenceAD2=Ab,

AHCL=Aa+AbAa=AHCL-AD2(4.13)(4.14)(4.15)4.3.GraphiteFurnaceAtomicAbsorptionGraphitefurnaceatomizercomponents

TheGraphiteFurnacePowerSupplyandProgrammer

QuantitativeanalysisGFAAS

EffectofMatrixonHeightandArea1.Graphitefurnaceatomizercomponents

TheGraphiteFurnaceAtomizerAbasicgraphitefurnaceatomizeriscomprisedofthefollowingcomponents:·graphitetube·electricalcontacts·enclosedwatercooledhousing·inertpurgegascontrolsTHGAgraphitetubeFig4-27TheGraphiteFurnacePowerSupplyandProgrammer

AGraphiteFurnaceTemperatureProgramDryingPyrolysisCoolDown(optional)AtomizationCleanOutCoolDownChapter5

UltravioletandVisibleSpectrophotometry5.1.ConceptsofUV-Vis.Spectrophotometry5.2.UV-Vis.Spectrophotometer5.3.AnalyticalMethods

5.1.

ConceptsofUV-Vis.Spectrophotometry1.MolecularabsorptionandFluorescence2.Lambert-Beer’sLaw

(1)TransmittanceT:(5.1)(2)Absorbance:

(3)Molarabsorptivity

When:theunitofbisincm,Cinmol/L,molarabsorptivity

is:B:transitionprobability,:effectiveareaofmolecular(5.2)(5.3)5.2.

UV-Vis.SpectrophotometerAASpectrophotometerDoublebean

UV-Vis.Spectrophotometer5.3.

AnalyticalMethods

1.QualitativeAnalysis

2.QuantitativeAnalysis

3.DualwavelengthSpectrophotometry

4.DifferentialSpectrophotometry

5.DerivativeSpectraQualitativeAnalysis

⑴OrganicCompound

Chromophore

max(nm)

(mol-1.cm-1)TransitionTypeR3C—N—2003000n→*R3C—S—2002000n→*—N=N—34010n→*—S—S—250-3301000n→*R2C=S500,24010,9000n→*R2C=O280,19020,2000n→*,n→*—COOR205,16550,4000n→*,→*⑵InorganicCompoundIonn3d,e

max(nm)Ionn3d,e

max(nm)Sc2+0------Zn2+10------Ti(H2O)63+1492.6Cu+10------VO2+1625Cu(H2O)62+9592,794Cr(H2O)63+2407,575Ni(H2O)62+8395,650,740V(H2O)62+3557Co(H2O)62+7516,541,625Cr(H2O)62+3709Fe(H2O)63+5411,540,794Mn(H2O)63+4476Mn(H2O)62+4402,435,5323.DoublewavelengthSpectrophotometryTwo-componentanalysiswithdoublewavelengthAC,520=AC,540AB+C,520=AB,520+AC,520AB+C,540=AB,540+AC,540A=AB+C,520-AB+C,540=AB,520-AB,5404.DifferentialSpectrophotometry(5.4)(5.5)⑴whenTS,1=0,TS,2=100%⑵whenTS,1=0,TS,2<100%⑶whenTS,1>0(5.6)(5.7)(5.8)5.DerivativeSpectra5.4

MolecularFluorescence

SpectrometerChapter6

ElectrochemicalAnalysisAnodereaction:

Red===Ox+ne

-Cathodereaction:

Ox+ne

-===

Red6.1IntroductionOxidation–reductionreactionCellreactionexpression

Anodesolution,(Ox)solution,(Red)Cathode(6r-1)(6r-2)Forexample:ZnZnSO4,(xMol)CuSO4,(yMol)CuAnode:ZnZn2++2e-Cathode:Cu2++2e-Cu(6r-3)(6r-4)2.Half-cellPotentialForhalf–cellreaction:

rAred+ne-

pAOxNernstequation:ForaCell:

Ecell=Ecathode-Eanode

If,Ecell>0:PrimaryCell

Ecell<0:ElectrolyicCell(6r-5)(6-1)(6-2)3.The

TypesofElectrodesAmetalinEquilibriumwithitsions

(ClassⅠelectrodes)Ag++e-Ag(6r-6)(6-3)Ametalinequilibriumwithasaturatedsolutionofaslightlysolublesalt

(ClassⅡelectrodes)AgAgClCl-,(

=1)AgCl(s)+e-Ag+Cl–ReferenceelectrodesSaturatedcalomelelectrode(SCE)HgHg2Cl2(s)Cl-,(sat’dKCL)Hg2Cl2(s)+2e-2Hg+2Cl–(sat’dKCL)(6r-7)(6r-8)AmetalinequilibriumwithtowslightlysolublesaltswithacommonAnion

(ClassⅢelectrodes)AgAg2S,CdSAg+,Cd2+,S2-,Ag2S(s)2Ag++S2-CdS(s)Cd2++S2-(6r-9)(6r-10)4.ThedepartureofpotentialLiquid-junctionpotential

HCl(0.1M)

KCl(saltbridge,xM)KCl(0.1M)Whenx>3.6Eljp<1mVPolarization

Efact

≠ENernst

andCsurf≠Cbolk

Over-voltagerealpotentialstartareaction>equilibriumpotentialOhmdrop

Ecell

=Ecathode

-Eanode+IR

R:resistanceofsolution,I:current(6-4)6.2PotentiometryPrinciple

(6-5)(6-6)(6-7)(6-8)2.IonselectiveMembraneElectrodeStructureofISETypesFig6-1(1)TheGlassElectrodeAg︱Agcl(s)︱HCl(

inner)︱glass︱H+(unknownsolution)(6-9)Fig6-2Glasselectrode︱unknownsolution︱SCE(6-10)(6-11)(6-12)SelectivityofGlasselectrodeH+G-+M+(sol)M+G-+

H+(sol)k:selectivitycoefficient(6-13)(6-14)(6r-11)(2)TheResponseBehaviorofISENernstresponseandDetectlimit(6-15)Fig6-3SelectivityResponsetime(6-16)Fig6-4ThePrerequisiteofExperimentsIonIntensityBuffer3.QuantitativeAnalysis(6-17)(6-18)(6-19)f_activitycoefficientIfCion,T≈constant,f≈constant.pHBufferMZ++xOH-M(OH)x(z-x)+H++OH-H2OComplexreagentMZ++nL

MLnZ+

(6-20)(6r-12)(6r-13)(6r-14)(6-21)(6-22)(6-23)(6-24)(2)StandardcalibrationMethodsC0/molL-110-33.16x10-410-43.16x10-510-5lgc-3-3.500-4-4.500-5standardconcentrationseriesIf=1:E=K+slgC0Fig6-5(3)StandardAdditionMethods(6-25)(6-26)(6-27)(6-28)assume:f1=f2,

1=2,S=0.0591/n(6-29)(6-30)(6-31)6.3PolarographyIntroduction(1)ElectrolyticcellCathode: M++e-→M Hg(l)∣M+(C)︱SCE

Wkg:WorkingElectrodeRef:ReferenceElectrode(SCE)(2)Polarization

M+(Bulk)→M+(Cathode)Fig6-72.TheDroppingMercuryElectrode(DME)(1)StructureofDMEFig6-8(2)ElectrolyticcurrentandcurrentdensityFig6-93.QuantitativeAnalysis

(1)IlkovicEquationm____rateofmercuryflowD____diffusioncoefficient____Averagediffusioncurrent(6-32)(6-33)(2)ThefactorofaffectdiffusioncurrentResidualcurrentChangingcurrentMigratingcurrentMaximumphenomenonOxygeninterference4.QualitativeAnalysisHalfwavepotential(6-34)(6-35)Chapter7

GasChromatograph7.1IntroductiontoInterphaseSeparationsInterphaseSeparationsMixedSubstancesMobilePhaseStationaryPhaseSeparatedComponents2.ClassificationofChromatography

InstrumentationBythetypesofmobilephase&stationaryphaseGas-LiquidGLCGas-SolidGSCLiquid-LiquidLLCLiquid-SolidLSCBystationary’sformsColumn

PaperthinlayerByseparationmechanismabsorptionpartitionexchange3.TypicalGCSProgressesCarriergasColumnInjectorSampleDetectorChromatogram7.2PrincipleofGC1.TheInterphasePartitionofOneSubstanceC(m)C(s)(1)

PartitionCoefficientK7-1(2)

PartitionRatiokp,q:massfractioninthestationaryandmobilephasek:

PartitionRatioorCapacityfactor

:phaseratio7-27-37-42.TheoreticalPlate(1)Somecommonrelationship(2)TheoreticalPlateModel:HeightEquivalenttoaTheoreticalPlate(HETP)GasFlowrateis1plateVolumepertimeKisaconstantSamplecomeintotheplateonlybytheplateNo.07-5Binomialdistributing7-77-63.ExportCurveEquationExportCurveEquation

(Gaussdistribution)7-8(2)TheShapeofExportcurvetm(tair):unreteinedtime

tR:retentiontimeT’R:adjustedretentiontimeVm(Vair):unreteinedvolumeVR:retentionvolumeV’R:adjustedretentionvolumeh:Peakofzone:StandarddeviationY:WidthofzoneY1/2:Halfpeakwidth7-97-107-117-127-13(3)TheNumberoftheoreticalplateandHETPL:lengthofthecolumn7-147-157-157-174.VanDeemterEquationu:velocityofthecarriergasA,BandCaretheconstantsforagivensystem7-187.3SeparationofComponentsSeparationfortowcomponents(1)ResolutionR(2)SeparationFactor7-197-202.SeparationEquationofGCAssume:

Y1=Y2=Y,k1≈k2=k7-217-227-233.ThreeSeparationfactor(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论