版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
InstrumentalAnalysisShanghaiUniversityContentsIntroductionIntroductiontoOpticalMethods
AtomicEmissionSpectroscopyAtomicAbsorptionSpectroscopy
TheAbsorptionofRadiation:UltravioletandVisible
MolecularLuminescence:FluorometryandphosphorimetryTheAbsorptionofRadiation:Infrared
IntroductiontoElectrochemicalMethods
Potentiometry
PolarographyIntroductiontoInterphaseSeparations
GasChromatographyLiquidChromatography
Chapter1
Introduction
DefinitionofInstrumentalAnalysisClassificationFunctionImportantConsiderations
1.1.The
DefinitionofInstrumental
Analysis
Thescienceandart
ofdeterminingthecompositionofmaterials
with
theinstrumentalmethods
basedon
aphysicalpropertycharacteristic
ofaparticularelementorcompound
ChemicalInformation
observableSignalbydeterminationof
physicalproperties1.2.
PhysicalPropertiesUsefulinInstrumentalAnalysis1.
InteractionofRadiantEnergywithMatter2.
ElectricalorElectrochemicalProperties3.
InterphaseSeparation4.Other
Properties
MechanicalProperties
ThermalProperties
NuclearProperties
ExtensiveProperties1.3.
ClassificationofMainInstrumentalMethods
1.
OpticalMethods
Atomic:
AbsorptionSpectroscopy, Emission,Spectroscopy FluorescenceSpectroscopy
Molecular:
UV-Vis.Spectrophotometry IRSpectroscopy2.
ElectrochemicalMethods Potentiometry Polarography Voltammetry3.
Chromatography GasChromatography LiquidChromatography1.4
BasicFunctionofInstrumentationSignalGeneratorsInputTransducersSignalTransformationModulesOutputTransducers1.5
MajorAreasofanInstrumentalMethodHowthemethod“works”AdvantagesandlimitationsofthemethodIllustrativeinstrumentationApplicationsProblemsBibliographyChapter2
IntroductiontoOpticalMethods
TheNatureofRadiantEnergySpectralRegionsInteractionofRadiationwithAtomandMoleculePracticalSourcesofRadiationSpectrographandMonochromator2.1
TheNatureofRadiantEnergyTheDualityofLight:WavepropertiesRefractionDiffractionReflectionScatteringVfrequency,Cvelocityoflight,wavelength,vwavenumber__(2.1)-Whereh
isPlanck’sconstant,h=6.6256×10-34J.s2.Particularproper(theEnergyofaphoton)(2.2)2.2
SpectralRegions2.3a
InteractionofRadiationwithAtoms
Emission
Atom(highexcitedstate)→Atom(lowerexcitedstate)+h
Absorption
Atom(groundstate)+h→Atom(highexcitedstate)Fluorescence
Atom(groundstate)+h→Atom(highexcitedstate)
Atom(lowerexcitedstate)+hF
2.3b
InteractionofRadiationwithMoleculesE(molecule)=Ee+Ev+ErE=E2—E1=hvAbsorptionM+hv→M*FluorescenceM+hv→M*→M+hv`2.4
Instrumentation
1.TheComponentsofaSpectrometer
⑴LightSource⑵Samplecell⑶PolychromatororMonochromator⑷Detector2.Atomicspectrometrysystem3.Dispersion
⑴ByaPrism
⑵ByaGratingGratingEquation
Where::blazeangle,nr:numberofgrooves/mm,:wavelength,m:gratingorder:incidentangle,:diffractedangle,Forablazedreflectiongrating(echelette)(2.3)(2.4)lineardispersionReciprocallineardispersionDrAngledispersionofagrating(2.5)(2.6)(2.7)ResolvingPowerBlazingrangeTheminimumpositioncorrespondstoanoptimumslitwidthWhere:wisdiameterofthelens,fisthefocallength.(2.8)(2.9)(2.10)4.ATypicalMonochromatorChapter3
AtomicEmissionSpectroscopy3.1.FundamentalsofAES
3.2.Instrumentation
3.3.AnalyticalMethodsofAES3.4.ControlofAnalyticalInterferences
3.1.FundamentalsofAES
AtomicEmissionProcesses3.2.Instrumentation1.Lightsource2.Spectrometer3.Detector4.ReadoutLightSourceTypeEva.Temp.Exci.Temp.stabilityApplication.DCArchighlowpoorQualitativeAnalysisACArcmidmidgoodQualitativeAnalysisSparklowhighestgoodQuantitativeAnalysisICPhighesthighbestQuantitativeAnalysisLightSourceProgressesSpectrometer⑴MonochromaterOptical-directReadSpectrometor⑵PolychromaterOptical-directReadSpectrometor3.Detector⑴Spectrograph⑵PhotomultiplierTube⑶Segmented-arrayCharge-CoupledDetector(SCD)ICP-AESInstrumentationSystemTwo-dimensionalarrayproducedbytheechellemountFig3-16SchemeofSCDDetector3.3AnalyticalMethodsofAES1.QualitativeAnalysis
⑴StandardIronSpectraComparison ⑵IndicateElementSpectraComparison ⑶DeterminationofLineWavelength
2.QuantitativeAnalysisQuantitativeFormula⑴theoreticalFormulaofAES(3.1)(3.2)(3.3)⑵LomakinFormula
⑶InternalStandardMethods
⑷StandardCalibrationMethods
(3.4)(3.5)(3.6)3.4.AnalyticalInterferences
SpectrumInterferenceBackgroundInterferenceMatrixInterference1.SpectrumInterference2.BackgroundInterference3.MatrixInterference3.5SensitivityandDetectionLimit1.Detectionlimit
(3.7)Chapter4
AtomicAbsorptionSpectroscopy4.1.TheoreticalConcepts4.2.AtomicAbsorption Instrumentation
4.3.GraphiteFurnaceAtomic Absorption
4.4.ControlofAnalytical Interferences
4.1.TheoreticalConceptsTheAtomicAbsorptionProcessTheoreticalConceptsQuantitativeAnalysisCharacteristicConcentrationDetectionLimits
TheAtomicAbsorptionProcessFig4-3GrotriandiagramsforNaFig4-2GrotriandiagramsforK2.TheoreticalConcepts
⑴IntegralFormulaofAAS
Fig4-4TypicalShapeofAAtomicAbsorptionlineIntegralAbsorptionFormula
ByatomictheoryByLineShapeFunction(theNaturedistribute)ThePeakAbsorptionCoefficientk0is:(4.1)(4.2)(4.3)⑵PeakAbsorptionTheory
byLambert-Beer’sLaw:(4.4)(4.5)(4.6)TheAbsorbanceis:Whenva>>ve,thenkv≈k0,(4.7)(4.8)(4.9)3.QuantitativeAnalysis(4.10)4.CharacteristicConcentration
The‘‘characteristicconcentration’’(sometimescalled‘‘sensitivity’’)isaconventionfordefiningthemagnitudeoftheabsorbancesignalwhichwillbeproducedbyagivenconcentrationofanalyte.Forflameatomicabsorption,thistermisexpressedastheconcentrationofanelementinmilligramsperliter(mg/L)requiredtoproducea1%absorption(0.0044absorbance)signal.(4.11)5.DetectionLimitHavingobtainedthedata,makethecalculationasfollows:Averagethetwoblankreadingstakenimmediatelybeforeandaftereachstandardandsubtractfromthestandardreading.2.Calculatethemeanandstandarddeviationforthesetofcorrectedhigh-standardreadings.Dothesameforthesetofcorrectedlowstandardreadings.3.Iftheratioofthemeansdoesnotcorrespondtotheratiooftheconcentrationpreparedtowithinstatisticalerror,rejectthedata.4.Ifthedatapasstheratio-of-the-meanstest,calculatethe concentrationdetectionlimitasfollows:(4.12)4.2.AtomicAbsorption
Instrumentation
1.PhotometersforAASANewTypePhotometerforAAS2.linesource(HollowCathodeLamp)Fig4-13HollowCathodeLampEmissionProcessFig4-143.AtomizerforAAS(Pre-MixBurnerSystem)
Fig4-19TreeTypeBurnerHeadfordifferentTypeFlame4.ControlofAnalyticalInterferencesIonizationInterferenceMatrixInterferenceChemicalInterferenceBackgroundInterferenceIonizationInterferenceMatrixInterferenceChemicalInterferenceTheMethodOfStandardAdditionsNo.SampleAddedmlStandardAddedmlConcentr.ofstandardmg/LLastConcentriationmg/L1Vx0CsVxVL2VsVx+CsVsVL32VsVx+2CsVsVL43VsVx+3CsVsVLBackgroundInterferenceAD2=Ab,
AHCL=Aa+AbAa=AHCL-AD2(4.13)(4.14)(4.15)4.3.GraphiteFurnaceAtomicAbsorptionGraphitefurnaceatomizercomponents
TheGraphiteFurnacePowerSupplyandProgrammer
QuantitativeanalysisGFAAS
EffectofMatrixonHeightandArea1.Graphitefurnaceatomizercomponents
TheGraphiteFurnaceAtomizerAbasicgraphitefurnaceatomizeriscomprisedofthefollowingcomponents:·graphitetube·electricalcontacts·enclosedwatercooledhousing·inertpurgegascontrolsTHGAgraphitetubeFig4-27TheGraphiteFurnacePowerSupplyandProgrammer
AGraphiteFurnaceTemperatureProgramDryingPyrolysisCoolDown(optional)AtomizationCleanOutCoolDownChapter5
UltravioletandVisibleSpectrophotometry5.1.ConceptsofUV-Vis.Spectrophotometry5.2.UV-Vis.Spectrophotometer5.3.AnalyticalMethods
5.1.
ConceptsofUV-Vis.Spectrophotometry1.MolecularabsorptionandFluorescence2.Lambert-Beer’sLaw
(1)TransmittanceT:(5.1)(2)Absorbance:
(3)Molarabsorptivity
When:theunitofbisincm,Cinmol/L,molarabsorptivity
is:B:transitionprobability,:effectiveareaofmolecular(5.2)(5.3)5.2.
UV-Vis.SpectrophotometerAASpectrophotometerDoublebean
UV-Vis.Spectrophotometer5.3.
AnalyticalMethods
1.QualitativeAnalysis
2.QuantitativeAnalysis
3.DualwavelengthSpectrophotometry
4.DifferentialSpectrophotometry
5.DerivativeSpectraQualitativeAnalysis
⑴OrganicCompound
Chromophore
max(nm)
(mol-1.cm-1)TransitionTypeR3C—N—2003000n→*R3C—S—2002000n→*—N=N—34010n→*—S—S—250-3301000n→*R2C=S500,24010,9000n→*R2C=O280,19020,2000n→*,n→*—COOR205,16550,4000n→*,→*⑵InorganicCompoundIonn3d,e
max(nm)Ionn3d,e
max(nm)Sc2+0------Zn2+10------Ti(H2O)63+1492.6Cu+10------VO2+1625Cu(H2O)62+9592,794Cr(H2O)63+2407,575Ni(H2O)62+8395,650,740V(H2O)62+3557Co(H2O)62+7516,541,625Cr(H2O)62+3709Fe(H2O)63+5411,540,794Mn(H2O)63+4476Mn(H2O)62+4402,435,5323.DoublewavelengthSpectrophotometryTwo-componentanalysiswithdoublewavelengthAC,520=AC,540AB+C,520=AB,520+AC,520AB+C,540=AB,540+AC,540A=AB+C,520-AB+C,540=AB,520-AB,5404.DifferentialSpectrophotometry(5.4)(5.5)⑴whenTS,1=0,TS,2=100%⑵whenTS,1=0,TS,2<100%⑶whenTS,1>0(5.6)(5.7)(5.8)5.DerivativeSpectra5.4
MolecularFluorescence
SpectrometerChapter6
ElectrochemicalAnalysisAnodereaction:
Red===Ox+ne
-Cathodereaction:
Ox+ne
-===
Red6.1IntroductionOxidation–reductionreactionCellreactionexpression
Anodesolution,(Ox)solution,(Red)Cathode(6r-1)(6r-2)Forexample:ZnZnSO4,(xMol)CuSO4,(yMol)CuAnode:ZnZn2++2e-Cathode:Cu2++2e-Cu(6r-3)(6r-4)2.Half-cellPotentialForhalf–cellreaction:
rAred+ne-
pAOxNernstequation:ForaCell:
Ecell=Ecathode-Eanode
If,Ecell>0:PrimaryCell
Ecell<0:ElectrolyicCell(6r-5)(6-1)(6-2)3.The
TypesofElectrodesAmetalinEquilibriumwithitsions
(ClassⅠelectrodes)Ag++e-Ag(6r-6)(6-3)Ametalinequilibriumwithasaturatedsolutionofaslightlysolublesalt
(ClassⅡelectrodes)AgAgClCl-,(
=1)AgCl(s)+e-Ag+Cl–ReferenceelectrodesSaturatedcalomelelectrode(SCE)HgHg2Cl2(s)Cl-,(sat’dKCL)Hg2Cl2(s)+2e-2Hg+2Cl–(sat’dKCL)(6r-7)(6r-8)AmetalinequilibriumwithtowslightlysolublesaltswithacommonAnion
(ClassⅢelectrodes)AgAg2S,CdSAg+,Cd2+,S2-,Ag2S(s)2Ag++S2-CdS(s)Cd2++S2-(6r-9)(6r-10)4.ThedepartureofpotentialLiquid-junctionpotential
HCl(0.1M)
KCl(saltbridge,xM)KCl(0.1M)Whenx>3.6Eljp<1mVPolarization
Efact
≠ENernst
andCsurf≠Cbolk
Over-voltagerealpotentialstartareaction>equilibriumpotentialOhmdrop
Ecell
=Ecathode
-Eanode+IR
R:resistanceofsolution,I:current(6-4)6.2PotentiometryPrinciple
(6-5)(6-6)(6-7)(6-8)2.IonselectiveMembraneElectrodeStructureofISETypesFig6-1(1)TheGlassElectrodeAg︱Agcl(s)︱HCl(
inner)︱glass︱H+(unknownsolution)(6-9)Fig6-2Glasselectrode︱unknownsolution︱SCE(6-10)(6-11)(6-12)SelectivityofGlasselectrodeH+G-+M+(sol)M+G-+
H+(sol)k:selectivitycoefficient(6-13)(6-14)(6r-11)(2)TheResponseBehaviorofISENernstresponseandDetectlimit(6-15)Fig6-3SelectivityResponsetime(6-16)Fig6-4ThePrerequisiteofExperimentsIonIntensityBuffer3.QuantitativeAnalysis(6-17)(6-18)(6-19)f_activitycoefficientIfCion,T≈constant,f≈constant.pHBufferMZ++xOH-M(OH)x(z-x)+H++OH-H2OComplexreagentMZ++nL
MLnZ+
(6-20)(6r-12)(6r-13)(6r-14)(6-21)(6-22)(6-23)(6-24)(2)StandardcalibrationMethodsC0/molL-110-33.16x10-410-43.16x10-510-5lgc-3-3.500-4-4.500-5standardconcentrationseriesIf=1:E=K+slgC0Fig6-5(3)StandardAdditionMethods(6-25)(6-26)(6-27)(6-28)assume:f1=f2,
1=2,S=0.0591/n(6-29)(6-30)(6-31)6.3PolarographyIntroduction(1)ElectrolyticcellCathode: M++e-→M Hg(l)∣M+(C)︱SCE
Wkg:WorkingElectrodeRef:ReferenceElectrode(SCE)(2)Polarization
M+(Bulk)→M+(Cathode)Fig6-72.TheDroppingMercuryElectrode(DME)(1)StructureofDMEFig6-8(2)ElectrolyticcurrentandcurrentdensityFig6-93.QuantitativeAnalysis
(1)IlkovicEquationm____rateofmercuryflowD____diffusioncoefficient____Averagediffusioncurrent(6-32)(6-33)(2)ThefactorofaffectdiffusioncurrentResidualcurrentChangingcurrentMigratingcurrentMaximumphenomenonOxygeninterference4.QualitativeAnalysisHalfwavepotential(6-34)(6-35)Chapter7
GasChromatograph7.1IntroductiontoInterphaseSeparationsInterphaseSeparationsMixedSubstancesMobilePhaseStationaryPhaseSeparatedComponents2.ClassificationofChromatography
InstrumentationBythetypesofmobilephase&stationaryphaseGas-LiquidGLCGas-SolidGSCLiquid-LiquidLLCLiquid-SolidLSCBystationary’sformsColumn
PaperthinlayerByseparationmechanismabsorptionpartitionexchange3.TypicalGCSProgressesCarriergasColumnInjectorSampleDetectorChromatogram7.2PrincipleofGC1.TheInterphasePartitionofOneSubstanceC(m)C(s)(1)
PartitionCoefficientK7-1(2)
PartitionRatiokp,q:massfractioninthestationaryandmobilephasek:
PartitionRatioorCapacityfactor
:phaseratio7-27-37-42.TheoreticalPlate(1)Somecommonrelationship(2)TheoreticalPlateModel:HeightEquivalenttoaTheoreticalPlate(HETP)GasFlowrateis1plateVolumepertimeKisaconstantSamplecomeintotheplateonlybytheplateNo.07-5Binomialdistributing7-77-63.ExportCurveEquationExportCurveEquation
(Gaussdistribution)7-8(2)TheShapeofExportcurvetm(tair):unreteinedtime
tR:retentiontimeT’R:adjustedretentiontimeVm(Vair):unreteinedvolumeVR:retentionvolumeV’R:adjustedretentionvolumeh:Peakofzone:StandarddeviationY:WidthofzoneY1/2:Halfpeakwidth7-97-107-117-127-13(3)TheNumberoftheoreticalplateandHETPL:lengthofthecolumn7-147-157-157-174.VanDeemterEquationu:velocityofthecarriergasA,BandCaretheconstantsforagivensystem7-187.3SeparationofComponentsSeparationfortowcomponents(1)ResolutionR(2)SeparationFactor7-197-202.SeparationEquationofGCAssume:
Y1=Y2=Y,k1≈k2=k7-217-227-233.ThreeSeparationfactor(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年行政服务协议范本下载:详尽条款版版B版
- 2024年股权担保合同
- 2024年高档会所食堂牛羊肉定制采购配送合同3篇
- 2024年跨境电子商务平台建设标前协议书
- 2024年规范化幼儿园租赁协议样本版B版
- 2024年质押借款合同正式样本
- 2024年电影业演员劳务协议示例版B版
- 2024年食品生产加工合作协议
- 2024建筑施工合同标的及工程进度安排
- 2024环保技术研发与污染治理服务合同
- 服务方案进度计划质量保障措施
- 博物馆展览活动应急预案
- 2025年包钢(集团)公司招聘笔试参考题库含答案解析
- 2025年沈阳水务集团招聘笔试参考题库含答案解析
- 2025年高三语文八省联考作文题目详解:7个立意、15个标题、5个素材
- 《科学与工程伦理》课件-1港珠澳大桥工程建设中的白海豚保护相关案例分析
- 肘关节镜手术
- 浙江省杭州市钱塘区2023-2024学年四年级上学期数学期末试卷
- 2024年北师大版四年级数学上学期学业水平测试期末测试卷(含答案)
- 天车租赁合同范例
- 多任务并行处理中的计算资源分配
评论
0/150
提交评论