2024届山东省济南市历下区数学八上期末学业水平测试模拟试题含解析_第1页
2024届山东省济南市历下区数学八上期末学业水平测试模拟试题含解析_第2页
2024届山东省济南市历下区数学八上期末学业水平测试模拟试题含解析_第3页
2024届山东省济南市历下区数学八上期末学业水平测试模拟试题含解析_第4页
2024届山东省济南市历下区数学八上期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省济南市历下区数学八上期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,D是线段AC、AB的垂直平分线的交点,若,,则的大小是A. B. C. D.2.两个一次函数与,它们在同一直角坐标系中的图象可能是()A. B.C. D.3.分式有意义,x的取值范围是()A.x≠2 B.x≠﹣2 C.x=2 D.x=﹣24.下列图案是轴对称图形的是().A. B. C. D.5.甲乙两地相距420千米,新修的高速公路开通后,在甲、乙两地行驶的长途客运车平均速度是原来的1.5倍,进而从甲地到乙地的时间缩短了2小时.设原来的平均速度为x千米/时,可列方程为()A. B.C. D.6.如图,AC、BD相交于点O,OA=OB,OC=OD,则图中全等三角形的对数是().A.1对 B.2对 C.3对 D.4对7.两条直线与在同一直角坐标系中的图象位置可能为().A. B. C. D.8.以下列各组数据为三角形的三边,能构成直角三角形的是()A.4cm,8cm,7cm B.2cm,2cm,2cmC.2cm,2cm,4cm D.6cm,8cm,10cm9.下列命题是真命题的是()A.同位角相等 B.两直线平行,同旁内角相等C.同旁内角互补 D.平行于同一直线的两条直线平行10.已知点和点是一次函数图像上的两点,则a与b的大小关系是()A. B. C. D.以上都不对11.估算在()A.5与6之间 B.6与7之间 C.7与8之间 D.8与9之间12.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长是,则图中四个小正方形的面积之和是()A. B. C. D.不能确定二、填空题(每题4分,共24分)13.八边形的外角和等于▲°.14.已知,则的值为____.15.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为__cm.16.分解因式:.17.如图是某足球队全年比赛情况统计图:根据图中信息,该队全年胜了_______场.18.如图,在四边形中,是的中点.点以每秒1个单位长度的速度从点出发,沿向点运动;点同时以每秒3个单位长度的速度从点出发,沿向点运动.点停止运动时,点也随之停止运动,当运动时间为秒时,以点为顶点的四边形是平行四边形,则的值等于_______.三、解答题(共78分)19.(8分)解不等式组:,并求出它的最小整数解.20.(8分)如图,为等边三角形,,相交于点,于点,(1)求证:(2)求的度数.21.(8分)如图,长方形中∥,边,.将此长方形沿折叠,使点与点重合,点落在点处.(1)试判断的形状,并说明理由;(2)求的面积.22.(10分)如图,以点为圆心,以相同的长为半径作弧,分别与射线交于两点,连接,再分别以为圆心,以相同长(大于)为半径作弧,两弧相交于点,连接.若,求的度数.23.(10分)如图,将置于直角坐标系中,若点A的坐标为(1)写出点B和点C的坐标(2)作关于x轴对称的图形,并说明对应点的横、纵坐标分别有什么关系?24.(10分)证明“角的内部到角的两边的距离相等的点在角的平分线上”.25.(12分)如图,在的网格纸中,每个小正方形的边长都为1,动点,分别从点,点同时出发向右移动,点的运动速度为每秒2个单位,点的运动速度为每秒1个单位,当点运动到点时,两个点同时停止运动.(1)当运动时间为3秒时,请在网格纸图中画出线段,并求其长度.(2)在动点,运动的过程中,若是以为腰的等腰三角形,求相应的时刻的值.26.现有3张边长为的正方形纸片(类),5张边长为的矩形纸片(类),5张边长为的正方形纸片(类).我们知道:多项式乘法的结果可以利用图形的面积表示.例如:就能用图①或图②的面积表示.(1)请你写出图③所表示的一个等式:_______________;(2)如果要拼一个长为,宽为的长方形,则需要类纸片_____张,需要类纸片_____张,需要类纸片_____张;(3)从这13张纸片中取出若干张,每类纸片至少取出一张,把取出的这些纸片拼成一个正方形(按原纸张进行无缝隙,无重叠拼接),则拼成的正方形的边长最长可以是_______(用含的式子表示).

参考答案一、选择题(每题4分,共48分)1、A【解题分析】利用线段的垂直平分线的性质可以得到相等的线段,进而可以得到相等的角,然后利用题目中的已知条件求解即可.【题目详解】解:是线段AC、AB的垂直平分线的交点,

,,

,,

故选A.【题目点拨】本题考查了线段的垂直平分线的性质,解题的关键是根据线段的垂直平分线得到相等的线段.2、C【分析】根据函数图象判断a、b的符号,两个函数的图象符号相同即是正确,否则不正确.【题目详解】A、若a>0,b<0,符合,不符合,故不符合题意;B、若a>0,b>0,符合,不符合,故不符合题意;C、若a>0,b<0,符合,符合,故符合题意;D、若a<0,b>0,符合,不符合,故不符合题意;故选:C.【题目点拨】此题考查一次函数的性质,能根据一次函数的解析式y=kx+b中k、b的符号判断函数图象所经过的象限,当k>0时函数图象过一、三象限,k<0时函数图象过二、四象限;当b>0时与y轴正半轴相交,b<0时与y轴负半轴相交.3、B【分析】分式中,分母不为零,所以x+2≠0,所以x≠-2【题目详解】解:因为有意义,所以x+2≠0,所以x≠-2,所以选B【题目点拨】本题主要考查分式有意义的条件4、D【分析】根据轴对称图形的概念求解.【题目详解】轴对称图形是图形两部分沿对称轴折叠后可重合.A,B,C图都不满足条件,只有D沿某条直线(对称轴)折叠后,图形两部分能重合,故选D.5、B【分析】设原来的平均速度为x千米/时,高速公路开通后的平均速度为1.5x千米/时,根据走过相同的距离时间缩短了2小时,列方程即可.【题目详解】解:设原来的平均速度为x千米/时,

由题意得,,故选:B.【题目点拨】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.6、C【解题分析】试题分析:已知OA=OB,∠DOA=∠COB,OC=OD,即可得△OAD≌△OBC,所以∠ADB=∠BCA,AD=BC,再由OA=OB,OC=OD,易得AC=-BD,又因AB=BA,利用SSS即可判定△ABD≌△BAC,同理可证△ACD≌△BDC,故答案选C.考点:全等三角形的判定及性质.7、B【分析】由于a、b的符号均不确定,故应分四种情况讨论,找出合适的选项.【题目详解】解:分四种情况讨论:当a>0,b>0时,直线与的图象均经过一、二、三象限,4个选项均不符合;当a>0,b<0,直线图象经过一、三、四象限,的图象经过第一、二、四象限;选项B符合此条件;当a<0,b>0,直线图象经过一、二、四象限,的图象经过第一、三、四象限,4个选项均不符合;当a<0,b<0,直线图象经过二、三、四象限,的图象经过第二、三、四象限,4个选项均不符合;故选:B.【题目点拨】此题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.8、D【解题分析】分析:本题用勾股定理的逆定理.即可得出.解析:A选项中,所以不能构成直角三角形,B选项是等边三角形,所以不能构成直角三角形,C选项不能构成三角形,所以不能构成直角三角形,D选项中,所以能构成直角三角形,故选D.9、D【分析】利用平行线的性质及判定定理进行判断即可.【题目详解】A、两直线平行,同位角才相等,错误,是假命题;B、两直线平行,同旁内角互补,不是相等,错误,是假命题;C、两直线平行,同旁内角才互补,错误,是假命题;D、平行于同一直线的两条直线平行,是真命题;故选:D.【题目点拨】主要考查了命题的真假判断,以及平行线的判定定理.真命题就是正确的命题,即如果命题的题设成立,那么结论一定成立.10、C【分析】根据一次函数的图像和性质,k<0,y随x的增大而减小解答.【题目详解】解:∵k=﹣2<0,∴y随x的增大而减小,∵5>3,∴a<b.故选:C.【题目点拨】本题考查了一次函数图象上点的坐标特征,利用一次函数的增减性求解更简便.11、D【解题分析】直接得出接近的有理数,进而得出答案.【题目详解】∵<<,

∴8<<9,

∴在8与9之间.

故选:D.【题目点拨】本题考查了估算无理数的大小,正确得出接近的有理数是解题的关键.12、A【分析】根据正方形的面积公式求出最大的正方形的面积,根据勾股定理计算即可.【题目详解】∵最大的正方形边长为∴最大的正方形面积为由勾股定理得,四个小正方形的面积之和正方形E、F的面积之和最大的正方形的面积故答案选A.【题目点拨】本题考查了正方形面积运算和勾股定理,懂得运用勾股定理来表示正方形的面积间的等量关系是解题的关键.二、填空题(每题4分,共24分)13、360【分析】根据多边形的外角和等于360°进行解答.【题目详解】根据多边形的外角和等于360°,∴八边形的外角和等于360°14、1【分析】根据已知得到,代入所求式子中计算即可.【题目详解】∵,∴,∴.故答案为:1.【题目点拨】本题考查了求分式的值,利用已知得到,再整体代入是解题的关键.15、1【分析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.【题目详解】试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.②当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=1cm.故填1.【题目点拨】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.16、.【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,直接提取公因式x再应用完全平方公式继续分解即可:【题目详解】故答案为:【题目点拨】考核知识点:因式分解.17、1【题目详解】解:用平的场次除以所占的百分比求出全年比赛场次:10÷25%=40(场),∴胜场:40×(1﹣20%﹣25%)=40×55%=1(场).故答案为:1.【题目点拨】本题考查1.条形统计图;2.扇形统计图;3.频数、频率和总量的关系.18、2或3.5【分析】分别从当Q运动到E和B之间、当Q运动到E和C之间去分析求解即可求得答案.【题目详解】如图,∵E是BC的中点,∴BE=CE=BC=9,①当Q运动到E和B之间,则得:3t﹣9=5﹣t,解得:t=3.5;②当Q运动到E和C之间,则得:9﹣3t=5﹣t,解得:t=2,∴当运动时间t为2秒或3.5秒时,以点P,Q,E,D为顶点的四边形是平行四边形.【题目点拨】“点睛”此题考查了梯形的性质以及平行四边形的判定与性质.解题时注意掌握辅助线的作法,注意掌握数形结合思想、分类讨论思想与方程思想的应用.三、解答题(共78分)19、不等式组的解集是:1≤x<4,最小整数解是1【分析】通过去分母,移项,合并同类项,未知数系数化为1,即可求解.【题目详解】,解不等式①得:x≥1,解不等式②得:x<4,∴不等式组的解集是:1≤x<4,∴最小整数解是1.【题目点拨】本题主要考查一元一次不等式组的解法,掌握解一元一次不等式组的基本步骤,是解题的关键.20、(1)见解析;(2)∠BPQ=60°【分析】(1)根据等边三角形的性质,通过全等三角形的判定定理SAS证得结论;

(2)利用(1)中的全等三角形的对应角相等和三角形外角的性质求得∠BPQ=60°;【题目详解】(1)证明:∵△ABC为等边三角形,

∴AB=CA,∠BAE=∠C=60°,在△AEB与△CDA中,∴△AEB≌△CDA(SAS);(2)解:由(1)知,△AEB≌△CDA,则∠ABE=∠CAD,

∴∠BAD+∠ABD=∠BAD+∠CAD=∠BAC=60°,

∴∠BPQ=∠BAD+∠ABD=60°;【题目点拨】本题考查了全等三角形的判定与性质、等边三角形的性质,在判定三角形全等时,关键是选择恰当的判定条件.21、(1)是等腰三角形;(2)1【解题分析】试题分析:(1)根据翻折不变性和平行线的性质得到两个相等的角,根据等角对等边即可判断△BEF是等腰三角形;(2)根据翻折的性质可得BE=DE,BG=CD,∠EBG=∠ADC=90°,设BE=DE=x,表示出AE=8-x,然后在Rt△ABE中,利用勾股定理列出方程求出x的值,即为BE的值,再根据同角的余角相等求出∠ABE=∠GBF,然后利用“角边角”证明△ABE和△GBF全等,根据全等三角形对应边相等可得BF=BE,再根据三角形的面积公式列式计算即可得解.试题解析:解:(1)△BEF是等腰三角形.∵ED∥FC,∴∠DEF=∠BFE,根据翻折不变性得到∠DEF=∠BEF,故∠BEF=∠BFE.∴BE=BF.△BEF是等腰三角形;(2)∵矩形ABCD沿EF折叠点B与点D重合,∴BE=DE,BG=CD,∠EBG=∠ADC=90°,∠G=∠C=90°,∵AB=CD,∴AB=BG,设BE=DE=x,则AE=AB-DE=8-x,在Rt△ABE中,AB2+AE2=BE2,即42+2=x2,解得x=5,∴BE=5,∵∠ABE+∠EBF=∠ABC=90°,∠GBF+∠EBF=∠EBG=90°,∴∠ABE=∠GBF,在△ABE和△MBF中,∴△ABE≌△GBF(ASA),∴BF=BE=5,∴△EBF的面积=×5×4=1.考点:等腰三角形,全等三角形的性质与判定,勾股定理22、∠MBD=40°【分析】由等腰三角形的性质得到∠ABC=∠ACB,∠DBC=∠DCB,则∠ABD=∠ACD,再根据邻补角即可得到∠MBD=∠NCD.【题目详解】由题意可知AB=AC,DB=DC∴∠ABC=∠ACB,∠DBC=∠DCB∴∠ABC+∠DBC=∠ACB+∠DCB,即∠ABD=∠ACD∴180°-∠ABD=180°-∠ACD,即∠MBD=∠NCD∴∠MBD=40°【题目点拨】本题考查了等腰三角形的性质,根据作图描述得到AB=AC,DB=DC是解题的关键.23、(1)(-3,1)(-1,2);(2)作图见详解,对应点的横、纵坐标的关系是:横坐标相等,纵坐标互为相反数.【分析】(1)根据点B,点C在坐标系中的位置,即可得到答案;(2)作出点A,B,C关于x轴的对称点,用线段连接起来即可;观察对应点的横,纵坐标的特点,即可得到答案.【题目详解】(1)由图可得:点B和点C的坐标分别是:(-3,1)(-1,2).(2)如图所示:对应点的横、纵坐标的关系是:横坐标相等,纵坐标互为相反数.【题目点拨】本题主要考查作轴对称图形以及轴对称的性质,理解轴对称的性质是解题的关键.24、见解析.【分析】根据题意画出图形,写出已知和求证,根据全等三角形的判定和性质进行证明.【题目详解】已知:如图,PE⊥OA于E,PF⊥OB于F,且PE=PF,

求证:点P在∠AOB的平分线上.

证明:在Rt△POE和Rt△POF中,

∴Rt△POE≌△RtPOF,

∴∠EOP=∠FOP

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论