版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河北省廊坊市霸州市八上数学期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于()A.10 B.8 C.6或10 D.8或102.以下列各组线段为边,能组成三角形的是()A.2cm,5cm,8cmB.3cm,3cm,6cmC.3cm,4cm,5cmD.1cm,2cm,3cm3.在下列四个标志图案中,轴对称图形是()A. B. C. D.4.若计算的结果中不含关于字母的一次项,则的值为()A.4 B.5 C.6 D.75.下列计算错误的是()A. B.C. D.6.下列计算正确的是()A.a3•a2=a6 B.(﹣2a2)3=﹣8a6 C.(a+b)2=a2+b2 D.2a+3a=5a27.下列图形中,对称轴最多的图形是()A. B. C. D.8.如图所示的图案中,是轴对称图形且有两条对称轴的是()A. B. C. D.9.如图所示,、的度数分别为()度A.80,35 B.78,33 C.80,48 D.80,3310.如图,在△ABC中,AB=6,BC=5,AC=4,AD平分∠BAC交BC于点D,在AB上截取AE=AC,则△BDE的周长为()A.8 B.7 C.6 D.5二、填空题(每小题3分,共24分)11.如图,中,,将折叠,使点与的中点重合,折痕为则线段的长为________.12.如图,在中,,按以下步骤作图:分别以点和点为圆心,大于一半长为半径作画弧,两弧相交于点和点,过点作直线交于点,连接,若,,则的周长为_____________________.13.如图,在△ABC中,∠A=60°,若剪去∠A得到四边形BCDE,则∠1+∠2=______.14.用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形.图中,____度.15.已知,点在第二象限,则点在第_________象限.16.已知等腰三角形一腰上的中线将这个等腰三角形的周长分为9和15两部分,则这个等腰三角形的腰长为__________.17.已知a2+b2=18,ab=﹣1,则a+b=____.18.已知多项式,那么我们把和称为的因式,小汪发现当或时,多项式的值为1.若有一个因式是(为正数),那么的值为______,另一个因式为______.三、解答题(共66分)19.(10分)解方程(组)(1)2(x-3)-3(x-5)=7(x-1)(2)=1(3)(4)20.(6分)某地长途汽车公司规定旅客可随身携带一定质量的行李,如果超过规定质量,则需要购买行李票,行李票元是行李质量的一次函数,如图所示:(1)求与之间的表达式(2)求旅客最多可免费携带行李的质量是多少?21.(6分)如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1).(1)请运用所学数学知识构造图形求出AB的长;(2)若Rt△ABC中,点C在坐标轴上,请在备用图1中画出图形,找出所有的点C后不用计算写出你能写出的点C的坐标;(3)在x轴上是否存在点P,使PA=PB且PA+PB最小?若存在,就求出点P的坐标;若不存在,请简要说明理由(在备用图2中画出示意图).备用图1备用图222.(8分)数学课上,张老师出示了如下框中的题目.已知,在中,,,点为的中点,点和点分别是边和上的点,且始终满足,试确定与的大小关系.小明与同桌小聪讨论后,进行了如下解答:(1)(特殊情况,探索结论)如图1,若点与点重合时,点与点重合,容易得到与的大小关系.请你直接写出结论:____________(填“”,“”或“”).(2)(特例启发,解答题目)如图2,若点不与点重合时,与的大小关系是:_________(填“”,“”或“”).理由如下:连结,(请你完成剩下的解答过程)(3)(拓展结论,设计新题)在中,,点为的中点,点和点分别是直线和直线上的点,且始终满足,若,,求的长.(请你直接写出结果)23.(8分)化简分式:,并从1,2,3,4这四个数中取一个合适的数作为x的值代入求值.24.(8分)对于多项式x3﹣5x2+x+10,我们把x=2代入此多项式,发现x=2能使多项式x3﹣5x2+x+10的值为0,由此可以断定多项式x3﹣5x2+x+10中有因式(x﹣2),(注:把x=a代入多项式,能使多项式的值为0,则多项式一定含有因式(x﹣a)),于是我们可以把多项式写成:x3﹣5x2+x+10=(x﹣2)(x2+mx+n),分别求出m、n后再代入x3﹣5x2+x+10=(x﹣2)(x2+mx+n),就可以把多项式x3﹣5x2+x+10因式分解.(1)求式子中m、n的值;(2)以上这种因式分解的方法叫“试根法”,用“试根法”分解多项式x3+5x2+8x+1.25.(10分)解下列方程组:(1)(2)26.(10分)观察下列等式:;;;……根据上面等式反映的规律,解答下列问题:(1)请根据上述等式的特征,在括号内填上同一个实数:()-5=();(2)小明将上述等式的特征用字母表示为:(、为任意实数).①小明和同学讨论后发现:、的取值范围不能是任意实数.请你直接写出、不能取哪些实数.②是否存在、两个实数都是整数的情况?若存在,请求出、的值;若不存在,请说明理由.
参考答案一、选择题(每小题3分,共30分)1、C【题目详解】分两种情况:在图①中,由勾股定理,得;;∴BC=BD+CD=8+2=10.在图②中,由勾股定理,得;;∴BC=BD―CD=8―2=6.故选C.2、C【解题分析】三角形中,任意两边之和大于第三边,任意两边之差小于第三边,据此进行解答即可.【题目详解】解:2cm+5cm<8cm,A不能组成三角形;3cm+3cm=6cm,B不能组成三角形;3cm+4cm>5cm,C能组成三角形;1cm+2cm=3cm,D不能组成三角形;故选:C.【题目点拨】本题考查了三角形的三边关系.3、B【解题分析】沿着一条直线折叠后两侧能够完全重合的图形是轴对称图形,根据定义判断即可.【题目详解】A不是轴对称图形,不符合题意;B是轴对称图形,符合题意;C不是轴对称图形,不符合题意;D不是轴对称图形,不符合题意;故选:B.【题目点拨】本题考查轴对称图形的识别,熟记定义是解题的关键.4、C【分析】根据题意,先将代数式通过多项式乘以多项式的方法展开,再将关于x的二次项、一次项及常数项分别合并,然后根据不含字母x的一次项的条件列出关于x的方程即可解得.【题目详解】∵计算的结果中不含关于字母的一次项∴∴故选:C【题目点拨】本题考查的知识点是多项式乘以多项式的方法,掌握多项式乘法法则,能根据不含一次项的条件列出方程是关键,在去括号时要特别注意符号的准确性.5、B【分析】根据二次根式的加减法对A进行判断;根据平方差公式对B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【题目详解】A、,计算正确,不符合题意;B、,计算错误,符合题意;C、,计算正确,不符合题意;D、,计算正确,不符合题意;故选:B.【题目点拨】本题主要考查了二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则.6、B【解题分析】A选项错误,a3·a2=a5;B选项正确;C选项错误,(a+b)2=a2+2ab+b2;D选项错误,2a+3a=5a.故选B.点睛:熟记公式:(1)(an)m=amn,(2)am·an=am+n,(3)(a±b)2=a2±2ab+b2.7、A【分析】先根据轴对称图形的定义确定各选项图形的对称轴条数,然后比较即可选出对称轴条数最多的图形.【题目详解】解:A、圆有无数条对称轴;
B、正方形有4条对称轴;
C、该图形有3条对称轴;
D、长方形有2条对称轴;
故选:A.【题目点拨】本题考查了轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.8、D【题目详解】选项A、B中的图形是轴对称图形,只有1条对称轴;选项C中的图形不是轴对称图形;选项D中的图形是轴对称图形,有2条对称轴.故选D.9、D【分析】在△BDC中,根据三角形外角的性质即可求出∠1的度数.在△ADC中,根据三角形内角和定理即可求出∠2的度数.【题目详解】在△BDC中,∠1=∠B+∠BCD=65°+15°=80°.在△ADC中,∠2=180°-∠A-∠1=180°-67°-80°=33°.故选D.【题目点拨】本题考查了三角形内角和定理以及三角形外角的性质.掌握三角形外角等于不相邻的两个内角和是解答本题的关键.10、B【题目详解】解:∵AD是∠BAC的平分线,∴∠EAD=∠CAD在△ADE和△ADC中,AE=AC,∠EAD=∠CAD,AD=AD,∴△ADE≌△ADC(SAS),∴ED=CD,∴BC=BD+CD=DE+BD=5,∴△BDE的周长=BE+BD+ED=(6−4)+5=7故选B.【题目点拨】本题考查全等三角形的应用.三角形全等的判定定理有:边边边(SSS)、边角边(SAS)、角边角(ASA)、角角边(AAS)、HL.通过证明三角形全等可以得到相等的边或角,可将待求量进行转化,使问题迎刃而解.二、填空题(每小题3分,共24分)11、1【分析】根据题意,设BN=x,由折叠DN=AN=9-x,在利用勾股定理列方程解出x,就求出BN的长.【题目详解】∵D是CB中点,BC=6∴BD=3设BN=x,AN=9-x,由折叠,DN=AN=9-x,在中,,,解得x=1∴BN=1.故答案是:1.【题目点拨】本题考查折叠的性质和勾股定理,关键是利用方程思想设边长,然后用勾股定理列方程解未知数,求边长.12、1【分析】利用基本作图可以判定MN垂直平分BC,则DC=DB,然后利用等线段代换得到的周长=AB+AC,再把,代入计算即可.【题目详解】解:由作法得MN垂直平分BC,则DC=DB,故答案为:1.【题目点拨】本题考查了基本作图和线段垂直平分线的性质,熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)是本题的关键.13、240.【题目详解】试题分析:∠1+∠2=180°+60°=240°.考点:1.三角形的外角性质;2.三角形内角和定理.14、36°.【分析】利用多边形的内角和定理和等腰三角形的性质即可解决问题.【题目详解】,是等腰三角形,度.【题目点拨】本题主要考查了多边形的内角和定理和等腰三角形的性质.解题关键在于知道n边形的内角和为:180°(n﹣2).15、四【分析】首先根据点A所在的象限可判定,然后即可判定点B所在的象限.【题目详解】∵点在第二象限,∴∴∴点B在第四象限故答案为四.【题目点拨】此题主要考查根据坐标判定点所在的象限,熟练掌握,即可解题.16、10【分析】设腰长为x,底边长为y,根据等腰三角形一腰上的中线将这个等腰三角形的周长分为9和15两部分,列方程解得即可.【题目详解】解:设腰长为xcm,底为ycm,根据题意可知:x-y=15-9=6(cm)或y-x=15-9=6(cm),
∵周长为24,即x+x+y=24,当腰长大于底边时,即x-y=6,可解得:x=10,y=4,此时三角形的三边为10,10,4,满足三角形的三边关系;当腰长小于底边时,即y-x=6,可解得:x=6,y=12,此时三角形的三边为6,6,12,不满足三角形的三边关系;综上可知,三角形的腰长为10cm,故答案为:10.【题目点拨】本题主要考查等腰三角形的性质,掌握等腰三角形的两腰相等是解题的关键.17、±1.【分析】根据题意,计算(a+b)2的值,从而求出a+b的值即可.【题目详解】(a+b)2=a2+2ab+b2=(a2+b2)+2ab=18﹣2=16,则a+b=±1.故答案为:±1.【题目点拨】本题考查了代数式的运算问题,掌握完全平方公式和代入法是解题的关键.18、1【分析】根据题意类比推出,若是的因式,那么即当时,.将代入,即可求出a的值.注意题干要求a为正数,再将求得的解代入原多项式,进行因式分解即可.【题目详解】∵是的因式,∴当时,,即,∴,∴,∵为正数,∴,∴可化为,∴另一个因式为.故答案为1;【题目点拨】本题考查根据题意用类比法解题和因式分解的应用,注意题干中a的取值为正数是关键.三、解答题(共66分)19、(1)x=2;(2)x=1;(3);(4)【分析】先去括号,再合并,最后化系数为1即可.先去分母,在去括号,合并最后化系数为1.代入法求解即可.消元法求解即可.【题目详解】解:(1)2(x-3)-3(x-5)=7(x-1)2x-6-3x+15=7x-7,2x-3x-7x=-7+6-15,-8x=-16,x=2;(2)=15(7x-3)-2(4x+1)=10,35x-15-8x-2=10,35x-8x=10+15+2,27x=27,x=1;(3)把方程①代入方程②,得3x+2x+4=1x=1把x=1代入方程①,得y=-2所以,(4)①×2+②×3,得8x+9x=6+45x=3把x=3代入方程①,得y=-3所以,【题目点拨】本题考查了一元一次方程的解法,以及二元一次方程组的解法,关键在于掌握其基本方法.20、(1);(2)旅客最多可免费携带行李的质量是.【分析】(1)由图,已知两点,可根据待定系数法列方程,求函数关系式;
(2)旅客可免费携带行李,即y=0,代入由(1)求得的函数关系式,即可知质量为多少.【题目详解】解:(1)设与之间的表达式为,把代入,得:,解方程组,得与之间的表达式为.(2)当时,,旅客最多可免费携带行李的质量是.【题目点拨】本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题,具备在直角坐标系中的读图能力.注意自变量的取值范围不能遗漏.21、(1)AB=;(1)C1(0,3),C2(0,-2),C5(-1,0)、C6(1,0);(3)不存在这样的点P.【分析】(1)如图,连结AB,作B关于y轴的对称点D,利用勾股定理即可得出AB;(1)分别以A,B,C为直角顶点作图,然后直接得出符合条件的点的坐标即可;(3)作AB的垂直平分线l3,则l3上的点满足PA=PB,作B关于x轴的对称点B′,连结AB′,即x轴上使得PA+PB最小的点,观察作图即可得出答案.【题目详解】解:(1)如图,连结AB,作B关于y轴的对称点D,由已知可得,BD=2,AD=1.∴在Rt△ABD中,AB=(1)如图,①以A为直角顶点,过A作l1⊥AB交x轴于C1,交y轴于C1.②以B为直角顶点,过B作l1⊥AB交x轴于C3,交y轴于C2.③以C为直角顶点,以AB为直径作圆交坐标轴于C5、C6、C3.(用三角板画找出也可)由图可知,C1(0,3),C2(0,-2),C5(-1,0)、C6(1,0).(3)不存在这样的点P.作AB的垂直平分线l3,则l3上的点满足PA=PB,作B关于x轴的对称点B′,连结AB′,由图可以看出两线交于第一象限.∴不存在这样的点P.【题目点拨】本题考查了勾股定理,构造直角三角形,中垂线和轴对称--路径最短问题的综合作图分析,解题的关键是学会分类讨论,学会画好图形解决问题.22、(1)=;(2)=,理由见解析;(1)1或1【分析】(1)根据等直角三角形斜边的中线等于斜边的一半解答即可;(2)连结,证明△BDE≌△ADF即可;(1)分四种情况求解:①当点E在BA的延长线上,点F在AC的延长线上;②当点E在AB的延长线上,点F在CA的延长线上;③当点E在AB的延长线上,点F在AC的延长线上;④当点E在BA的延长线上,点F在CA的延长线上.【题目详解】(1)∵,,∴∠ACD=45°.∵,点为的中点,∴∠CAD=45°,∴∠CAD=∠ACD,∴AD=CD,即DE=DF;(2)连结,∵,点为的中点,∴AD==BD.∵,,点为的中点,∴∠B=∠C=∠CAD=∠BAD=45°,AD⊥BC,∴∠ADE+∠BDE=90°.∵DE⊥DF,∴∠ADE+∠ADF=90°,∴∠BDE=∠ADF.在△BDE和△ADF中,∵∠B=∠CAD=45°,AD=BD,∠BDE=∠ADF,∴△BDE≌△ADF,∴DE=DF;(1)①当点E在BA的延长线上,点F在AC的延长线上,如图1,由(2)知,AD=CD,∠CAD=∠ACB=45°,∴∠DAE=∠DCE=115°.∵DE⊥DF,E⊥DF,∴∠CDE+∠CDF=90°,∠ADE+∠CDE=90°,∴∠CDF=∠ADE,在△ADE和△CDF中,∵∠DAE=∠DCE,AD=CD,∠ADE=∠CDF,∴△ADE≌△CDF,∴CF=AE,∵BE=2,,AB=1,∴CF=AE=2-1=1;②当点E在AB的延长线上,点F在CA的延长线上,如图2,与①同理可证△ADF≌△BDE,∴AF=BE=2,∵AC=1,∴CF=2+1=1;③当点E在AB的延长线上,点F在AC的延长线上,如图1,连接AD,并延长交EF与H,∵∠5=∠1+∠1,∠6=∠2+∠4,∴∠5+∠6=∠1+∠1+∠2+∠4,∵∠1+∠2=90°,∠5+∠6=90°,∴∠1+∠4=0°,不合题意,此种情况不成立;④当点E在BA的延长线上,点F在CA的延长线上,如图4,同③的方法可说明此种情况也不成立.综上可知,CF的长是1或1.【题目点拨】本题主要考查了等腰直角三角形的性质,三角形外角的性质,以及全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.23、x+2;当x=1时,原式=1.【分析】先把分子分母因式分解,约分,再计算括号内的减法,最后算除法,约分成最简分式或整式;再选择使分式有意义的数代入求值即可.【题目详解】解:=x+2,
∵x2-4≠0,x-1≠0,
∴x≠2且x≠-2且x≠1,
∴可取x=1代入,原式=1.【题目点拨】本题主要考查分式的化简求值,熟悉掌握分式的运算法则是解题的关键,注意分式有意义的条件.24、(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度物流服务合同标的为货物运输与仓储
- 2024年度企业研发合作与技术转让合同
- 调压阀市场需求与消费特点分析
- 玻璃盒市场需求与消费特点分析
- 搓衣板市场发展现状调查及供需格局分析预测报告
- 2024年度新能源技术研发与推广合同
- 2024年度云计算资源租赁与服务合同
- 2024年度东莞市房产买卖合同
- 2024年度企业咨询服务合同标的及服务内容
- 2024年度安徽省统计局统计专业技术人员聘用合同
- 超星尔雅学习通《海上丝绸之路》章节测试附答案
- 2022-2023学年苏教版(2019)必修二 2.1 DNA是主要的遗传物质 课件(36张)
- 腹腔镜下肾上腺嗜铬细胞瘤-切除术课件
- 优质《春天的色彩》课件
- 2020年1月国开(中央电大)专科《成本会计》期末考试试题及答案
- 指数函数及其性质 一等奖-精讲版课件
- “九小场所”消防安全排查记录表
- 三年级上册数学课件-6.1 平移和旋转丨苏教版 (共26张PPT)
- 普通混凝土用砂检验原始记录表(颗粒级配)
- 奖状证书模板优秀员工3
- 人教英语八年级上册Unit5SectionA1a2c说课课件(共18张)
评论
0/150
提交评论