重庆市一中学2024届数学八上期末复习检测试题含解析_第1页
重庆市一中学2024届数学八上期末复习检测试题含解析_第2页
重庆市一中学2024届数学八上期末复习检测试题含解析_第3页
重庆市一中学2024届数学八上期末复习检测试题含解析_第4页
重庆市一中学2024届数学八上期末复习检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆市一中学2024届数学八上期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列各多项式从左到右变形是因式分解,并分解正确的是()A.(a﹣b)3﹣b(b﹣a)2=(b﹣a)2(a﹣2b) B.(x+2)(x+3)=x2+5x+6C.4a2﹣9b2=(4a﹣9b)(4a+9b) D.m2﹣n2+2=(m+n)(m﹣n)+22.甲,乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后,结果如下。某同学根据上表分析,得出如下结论。班级参加人数中位数方差平均数甲55149191135乙55151110135(1)甲,乙两班学生成绩的平均水平相同。(2)乙班优秀的人数多于甲班优秀的人数。(每分钟输入汉字≧150个为优秀。)(3)甲班成绩的波动情况比乙班成绩的波动小。上述结论中正确的是()A.(1)(2)(3) B.(1)(2) C.(1)(3) D.(2)(3)3.已知a2+a﹣4=0,那么代数式:a2(a+5)的值是()A.4 B.8 C.12 D.164.如图,是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.若一个球按图中所示的方向被击出(球可以经过多反射),则该球最后将落入的球袋是(

)A.1号袋 B.2号袋 C.3号袋 D.4号袋5.如图,点D在△ABC内,且∠BDC=120°,∠1+∠2=55°,则∠A的度数为()A.50° B.60° C.65° D.75°6.如图,在△ABC中,AB=AC,AD、CE分别是△ABC的中线和角平分线,当∠ACE=35°时,∠BAD的度数是()A.55° B.40° C.35° D.20°7.若关于x的分式方程有增根,则m的值是()A.0或3 B.3 C.0 D.﹣18.如果是关于xy的二元一次方程mx﹣10=3y的一个解,则m的值为()A. B. C.﹣3 D.﹣29.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列美术字是轴对称图形的是()A.诚 B.信 C.友 D.善10.若分式的值为负数,则x的取值范围是()A.x>3 B.x<3 C.x<3且x≠0 D.x>-3且x≠0二、填空题(每小题3分,共24分)11.如图,小明站在离水面高度为8米的岸上点处用绳子拉船靠岸,开始时绳子的长为17米,小明以1米每秒的速度收绳,7秒后船移动到点的位置,问船向岸边移动了______米(的长)(假设绳子是直的).12.等腰三角形的两边长分别为2和4,则其周长为_____.13.计算=.14.分析下面式子的特征,找规律,三个括号内所填数的和是____________.,,7+(),15+(),(),…15.当取________时,分式无意义;16.如图,在等腰中,,,平分交于,于,若,则的周长等于_______;17.一次函数的图象经过点,且与轴、轴分别交于点、,则的面积等于___________.18.在二次根式中,x的取值范围是_________.三、解答题(共66分)19.(10分)先化简,再求值:,其中、互为负倒数.20.(6分)在边长为的小正方形组成的正方形网格中建立如图所示的平面直角坐标系,已知格点三角形(三角形的三个顶点都在小正方形的顶点上)(1)写出的面积;(2)画出关于轴对称的;(3)写出点及其对称点的坐标.21.(6分)如图,已知AB⊥BC,EC⊥BC,ED⊥AC且交AC于F,BC=CE,则AC与ED相等吗?说明你的理由.22.(8分)张庄甲、乙两家草莓采摘园的草莓销售价格相同,“春节期间”,两家采摘园将推出优惠方案,甲园的优惠方案是:游客进园需购买门票,采摘的草莓六折优惠;乙园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,某游客的草莓采摘量为x(千克),在甲园所需总费用为y甲(元),在乙园所需总费用为y乙(元),y甲、y乙与x之间的函数关系如图所示,折线OAB表示y乙与x之间的函数关系.(1)甲采摘园的门票是元,乙采摘园优惠前的草莓单价是每千克元;(2)当x>10时,求y乙与x的函数表达式;(3)游客在“春节期间”采摘多少千克草莓时,甲、乙两家采摘园的总费用相同.23.(8分)解下列分式方程.(1)(2)24.(8分)如图所示,在中,,D是AB边上一点.(1)通过度量AB.CD,DB的长度,写出2AB与的大小关系.(2)试用你所学的知识来说明这个不等关系是成立的.25.(10分)计算:(1)(1+3)(1-3)(1+2)(1-2);(2)(3+2)2(3-2)2;(3)(3+32-6)(3-32-6).26.(10分)某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元,求这两次各购进这种衬衫多少件?

参考答案一、选择题(每小题3分,共30分)1、A【分析】直接利用因式分解的定义进而分析得出答案.【题目详解】A、(a﹣b)3﹣b(b﹣a)2=﹣(b﹣a)3﹣b(b﹣a)2=(b﹣a)2(a﹣2b),是因式分解,故此选项正确;B、(x+2)(x+3)=x2+5x+6,是整式的乘法运算,故此选项错误;C、4a2﹣9b2=(2a﹣3b)(2a+3b),故此选项错误;D、m2﹣n2+2=(m+n)(m﹣n)+2,不符合因式分解的定义,故此选项错误.故选A.【题目点拨】此题主要考查了因式分解的意义,正确把握因式分解的定义是解题关键.2、B【分析】平均水平的判断主要分析平均数;根据中位数不同可以判断优秀人数的多少;波动大小比较方差的大小.【题目详解】解:从表中可知,平均字数都是135,(1)正确;甲班的中位数是149,乙班的中位数是151,比甲的多,而平均数都要为135,说明乙的优秀人数多于甲班的,(2)正确;甲班的方差大于乙班的,又说明甲班的波动情况小,所以(3)错误.综上可知(1)(2)正确.故选:B.【题目点拨】本题考查了平均数,中位数,方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.3、D【分析】由a2+a﹣4=0,变形得到a2=-(a-4),a2+a=4,先把a2=-(a-4)代入整式得到a2(a+5)=-(a-4)(a+5),利用乘法得到原式=-(a2+a-20),再把a2+a=4代入计算即可.【题目详解】∵a2+a﹣4=0,∴a2=-(a-4),a2+a=4,a2(a+5)=-(a-4)(a+5)=-(a2+a-20)=−(4−20)=16,故选D【题目点拨】此题考查整式的混合运算—化简求值,掌握运算法则是解题关键4、C【分析】根据题意,画出图形,由轴对称的性质判定正确选项.【题目详解】解:根据轴对称的性质可知,台球走过的路径为:

故选C.【题目点拨】本题主要考查了轴对称的性质.轴对称的性质:(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等.注意结合图形解题的思想;严格按轴对称画图是正确解答本题的关键.5、C【解题分析】根据三角形的内角和即可求出.【题目详解】在△BCD中,∠BDC=120°,∴∠DBC+∠DCB=180°-∠BDC=60°,∵∠1+∠2=55°,∴∠ABC+∠ACB=∠1+∠2+∠DBC+∠DCB=115°,∴∠A=180°-(∠ABC+∠ACB)=65°.故选C.【题目点拨】此题主要考查三角形的内角和,解题的关键是熟知三角形的内角和的性质.6、D【分析】根据角平分线的定义和等腰三角形的性质即可得到结论.【题目详解】∵CE是∠ACB的平分线,∠ACE=35°,∴∠ACB=2∠ACE=70°,∵AB=AC,∴∠B=∠ACB=70°,∵AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣∠B=20°,故选D.【题目点拨】本题考查了等腰三角形的两个底角相等的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.7、D【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x-4=0,得到x=4,然后代入化为整式方程的方程算出m的值.【题目详解】解:方程两边同乘(x-4)得∵原方程有增根,∴最简公分母x-4=0,解得x=4,把x=4代入,得,解得m=-1故选:D【题目点拨】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.8、B【分析】把x与y的值代入方程计算即可求出m的值.【题目详解】解:把代入方程得:6m﹣10=﹣6,解得:m=,故选:B.【题目点拨】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.9、D【分析】根据轴对称图形的概念逐一进行分析即可得.【题目详解】A.不是轴对称图形,故不符合题意;B.不是轴对称图形,故不符合题意;C.不是轴对称图形,故不符合题意;D.是轴对称图形,符合题意,故选D.【题目点拨】本题考查了轴对称图形的识别,熟知“平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形是轴对称图形”是解题的关键.10、C【解题分析】由于分式的分母不为0,那么此分式的分母恒为正数,若分式值为负数,则分子必为负数,可根据上述两点列出不等式组,进而可求出x的取值范围.【题目详解】根据题意得解得x<3且x≠0.故选:C.【题目点拨】考查分式的值,根据两式相除,同号得正,异号得负即可列出不等式,求解即可.二、填空题(每小题3分,共24分)11、1【分析】在Rt△ABC中,利用勾股定理计算出AB长,再根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB-AD可得BD长.【题目详解】在Rt△ABC中:

∵∠CAB=10°,BC=17米,AC=8米,

∴(米),∵此人以1米每秒的速度收绳,7秒后船移动到点D的位置,

∴(米),

∴(米),∴(米),

答:船向岸边移动了1米.

故答案为:1.【题目点拨】本题主要考查了勾股定理的应用,关键是掌握从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.12、10【分析】根据等腰三角形的性质可分两种情况讨论:①当2为腰时②当4为腰时;再根据三角形的三边关系确定是否能构成三角形,再计算三角形的周长,即可完成.【题目详解】①当2为腰时,另两边为2、4,2+2=4,不能构成三角形,舍去;②当4为腰时,另两边为2、4,2+4>4,能构成三角形,此时三角形的周长为4+2+4=10故答案为10【题目点拨】本题主要考查等腰三角形的性质,还涉及了三角形三边的关系,熟练掌握以上知识点是解题关键.13、.【解题分析】化简第一个二次根式,计算后边的两个二次根式的积,然后合并同类二次根式即可求解:.14、11.1【分析】分别找到这列算式中的整数部分的规律与分式部分的规律即可求解.【题目详解】这列算式中的整数部分:1,1,7,15…1×2+1=1;1×2+1=7;7×2+1=15;后一个整数是前一个整数的2倍加上1;∴括号内的整数为15×2+1=11,÷2=;÷2=验证:÷2=;要填的三个数分别是:,,11,它们的和是:++11=11=11.1.故答案为:11.1.【题目点拨】本题分出整数部分和分数部分,各自找出规律,再根据规律进行求解.15、1【分析】令x-1=0即可得出答案.【题目详解】∵分式无意义∴x-1=0解得x=1故答案为1.【题目点拨】本题考查的是分式无意义:分母等于0.16、1【解题分析】试题解析:∵AD平分∠CAB,AC⊥BC于点C,DE⊥AB于E,∴CD=DE.又∵AD=AD,∴Rt△ACD≌Rt△AED,∴AC=AE.又∵AC=BC,∴BC=AE,∴△DBE的周长为DE+BD+EB=CD+BD+EB=BC+EB=AC+EB=AE+EB=AB=1.17、【解题分析】∵一次函数y=−2x+m的图象经过点P(−2,3),∴3=4+m,解得m=−1,∴y=−2x−1,∵当x=0时,y=−1,∴与y轴交点B(0,−1),∵当y=0时,x=−,∴与x轴交点A(−,0),∴△AOB的面积:×1×=.故答案为.点睛:首先根据待定系数法求得一次函数的解析式,然后计算出与x轴交点,与y轴交点的坐标,再利用三角形的面积公式计算出面积即可.18、x<.【分析】依据二次根式有意义的条件,即可得出x的取值范围.【题目详解】二次根式中,1-2x>0,∴x的取值范围是x<,故答案为:x<.【题目点拨】本题主要考查了二次根式有意义的条件,如果所给式子中含有分母,则除了保证被开方数为非负数外,还必须保证分母不为零.三、解答题(共66分)19、,1【分析】先根据分式混合运算顺序和运算法则化简分式,再代入a、b计算即可.【题目详解】原式===,当、互为负倒数时,∴原式=1.【题目点拨】本题考查分式的化简求值、倒数定义,熟练掌握分式混合运算顺序和运算法则是解答的关键,注意化简结果要化成最简分式或整式.20、(1)7;(2)见解析;(3)A(-1,3),A1(1,3).【分析】(1)过点B作BD∥x轴交AC于点D,由图可知BD=2,AC=7,AC⊥x轴,从而得出BD⊥AC,然后根据三角形的面积公式求面积即可;(2)找到A、B、C关于y轴的对称点,然后连接、、即可;(3)由平面直角坐标系即可得出结论.【题目详解】解:(1)过点B作BD∥x轴交AC于点D,由图可知BD=2,AC=7,AC⊥x轴∴BD⊥AC∴S△ABC=(2)找到A、B、C关于y轴的对称点,然后连接、、,如下图所示:即为所求.(3)由平面直角坐标系可知:点A(-1,3),点A1(1,3).【题目点拨】此题考查的是求平角直角坐标系中三角形的面积、画已知三角形关于y轴的对称图形和根据坐标系写点的坐标,掌握三角形的面积公式和关于y轴对称的图形的画法是解决此题的关键.21、AC=ED,理由见解析【分析】证得∠ACB=∠DEC,可证明△DEC≌△ACB,则AC=ED可证出.【题目详解】解:AC=ED,理由如下:∵AB⊥BC,EC⊥BC,DE⊥AC,∴∠ACB+∠FCE=90°,∠FCE+∠DEC=90°,∴∠ACB=∠DEC,∵BC=CE,∠ABC=∠DCE=90°∴△DEC≌△ACB(ASA),∴AC=ED.【题目点拨】本题主要考查了全等三角形的判定及性质,分析并证明全等所缺条件是解题关键.22、(1)甲采摘园的门票是60元,乙采摘园优惠前的草莓单价是每千克30元;(2)y乙=12x+180;(3)采摘5千克或20千克草莓时,甲、乙两家采摘园的总费用相同【分析】(1)根据图像,可得出甲采摘园的门票价格,根据点A的坐标,可得出乙采摘园在优惠前草莓的单价;(2)将A、B两点代入解析式,用待定系数法可求得;(3)先求出y甲的解析式,然后分2段,分别令=即可.【题目详解】解:(1)由图象可得,甲采摘园的门票是60元点A(10,300)故乙采摘园优惠前的草莓单价为:=30元(2)当x>10时,设y乙与x的函数表达式是=kx+b,,得,即当x>10时,与x的函数表达式是=12x+180;(3)由题意可得,=60+300.6x=18x+60,当0<x<10时,令18x+60=30x,得x=5,当x>10时,令12x+180=18x+60,得x=20,答:采摘5千克或20千克草莓时,甲、乙两家采摘园的总费用相同.【题目点拨】本题考查

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论