版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市宝山区淞谊中学2024届数学八上期末综合测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.已知△ABC为直角坐标系中任意位置的一个三角形,现将△ABC的各顶点横坐标乘以-1,得到△A1B1C1,则它与△ABC的位置关系是()A.关于x轴对称 B.关于y轴对称C.关于原点对称 D.关于直线y=x对称2.甲、乙、丙、丁四名设计运动员参加射击预选赛,他们射击成绩的平均数及方差如下表示:若要选出一个成绩较好状态稳定的运动员去参赛,那么应选运动员()甲乙丙丁899811A.甲 B.乙 C.丙 D.丁3.如图所示的标志中,是轴对称图形的有()A.1个 B.2个 C.3个 D.4个4.8的立方根是()A.2 B.±2 C.±2 D.25.两个三角形如果具有下列条件:①三条边对应相等;②三个角对应相等;③两条边及它们的夹角对应相等;④两条边和其中一边的对角相等;⑤两个角和一条边对应相等,那么一定能够得到两个三角形全等的是()A.①②③④B.①③④⑤C.①③⑤D.①②③④⑤6.在△ABC中,AD是角平分线,DE⊥AB于点E,△ABC的面积为15,AB=6,DE=3,则AC的长是()A.8 B.6 C.5 D.47.将一副三角板按如图放置,则下列结论①;②如果,则有;③如果,则有;④如果,必有,其中正确的有()A.①②③ B.①②④ C.③④ D.①②③④8.在平面直角坐标系中,点在第()象限.A.一 B.二 C.三 D.四9.下列图案不是轴对称图形的是()A. B. C. D.10.三个等边三角形的摆放位置如图所示,若,则的度数为()A. B. C. D.11.如图,△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D,给出下列结论:①AF=AC;②DF=CF;③∠AFC=∠C;④∠BFD=∠CAF,其中正确的结论个数有.()A.4个 B.3个 C.2个 D.1个12.把分解因式正确的是()A. B. C. D.二、填空题(每题4分,共24分)13.已知P(a,b),且ab<0,则点P在第_________象限.14.三角形三条中线交于一点,这个点叫做三角形的_____.15.若等腰三角形的一个角为70゜,则其顶角的度数为_____.16.如图,点的坐标为,点在直线上运动,当线段最短时,点的坐标为__________.17.要使分式有意义,x的取值应满足______.18.△ABC中,AB=15,AC=13,高AD=12,则△ABC的面积为______________.三、解答题(共78分)19.(8分)解方程:20.(8分)已知,求代数式的值.21.(8分)如图,BF,CG分别是的高线,点D,E分别是BC,GF的中点,连结DF,DG,DE,(1)求证:是等腰三角形.(2)若,求DE的长.22.(10分)第二十四届冬季奥林匹克运动会将于2022年在北京市和张家口市举行.为了调查学生对冬奥知识的了解情况,从甲、乙两校各随机抽取20名学生进行了相关知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行了整理、描述和分析.下面给出了部分信息.a.甲校20名学生成绩的频数分布表和频数分布直方图如下:甲校学生样本成绩频数分布表甲校学生样本成绩频数分布直方图b.甲校成绩在的这一组的具体成绩是:87,88,88,88,89,89,89,89;c.甲、乙两校成绩的平均分、中位数、众数、方差如下:学校平均分中位数众数方差甲84n89129.7乙84.28585138.6表2根据以上图表提供的信息,解答下列问题:(1)表1中a=;b=;c=;表2中的中位数n=;(2)补全图甲校学生样本成绩频数分布直方图;(3)在此次测试中,某学生的成绩是87分,在他所属学校排在前10名,由表中数据可知该学生是校的学生(填“甲”或“乙”),理由是;(4)假设甲校200名学生都参加此次测试,若成绩80分及以上为优秀,估计成绩优秀的学生人数为.23.(10分)如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.24.(10分)某中学要印制期末考试卷,甲印刷厂提出:每套试卷收0.6元印刷费,另收400元制版费;乙印刷厂提出:每套试卷收1元印刷费,不再收取制版费.(1)分别写出两个厂的收费y(元)与印刷数量x(套)之间的函数关系式;(2)请在上面的直角坐标系中分别作出(1)中两个函数的图象;(3)若学校有学生2000人,为保证每个学生均有试卷,则学校至少要付出印刷费多少元?25.(12分)“校园手机”现象越来越受社会的关注.春节期间,小飞随机调查了城区若干名同学和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:
(1)这次的调查对象中,家长有人;(2)图2中表示家长“赞成”的圆心角的度数为度;(3)开学后,甲、乙两所学校对各自学校所有学生带手机情况进行了统计,发现两校共有576名学生带手机,且乙学校带手机学生数是甲学校带手机学生数的,求甲、乙两校中带手机的学生数各有多少?26.如图,AE=AD,∠ABE=∠ACD,BE与CD相交于O.(1)如图1,求证:AB=AC;(2)如图2,连接BC、AO,请直接写出图2中所有的全等三角形(除△ABE≌△ACD外).
参考答案一、选择题(每题4分,共48分)1、B【分析】已知平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(−x,y),从而求解.【题目详解】根据轴对称的性质,∵横坐标都乘以−1,∴横坐标变成相反数,根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,∴△ABC与△A′B′C′关于y轴对称,故选:B.【题目点拨】本题主要考查了平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,比较简单.2、B【分析】根据平均数及方差的定义和性质进行选择即可.【题目详解】由上图可知,甲、乙、丙、丁中乙、丙的平均数最大,为9∵∴乙的方差比丙的方差小∴选择乙更为合适故答案为:B.【题目点拨】本题考查了平均数和方差的问题,掌握平均数及方差的定义和性质是解题的关键.3、C【解题分析】根据轴对称的定义逐一判断即可.【题目详解】是轴对称图形,故符合题意;是轴对称图形,故符合题意;是轴对称图形,故符合题意;不是轴对称图形,故不符合题意,共有3个轴对称图形故选C.【题目点拨】此题考查的是轴对称图形的识别,掌握轴对称图形的定义是解决此题的关键.4、D【题目详解】解:根据立方根的定义,由23=8,可得8的立方根是2故选:D.【题目点拨】本题考查立方根.5、C【解题分析】根据三角形全等的判定定理SSS、SAS、ASA、AAS分别进行分析即可.【题目详解】①三条边对应相等,可利用SSS定理判定两个三角形全等;②三个角对应相等,不能判定两个三角形全等;③两条边及它们的夹角对应相等,可以利用SAS定理判定两个三角形全等;④两条边和其中一边的对角相等,不能判定两个三角形全等;⑤两个角和一条边对应相等利用AAS定理判定两个三角形全等.故选:C.【题目点拨】本题考查的是全等三角形的判定,熟练掌握判定定理是解题的关键.6、D【解题分析】试题分析:根据角平分线的性质可得:点D到AB和AC的距离相等,根据题意可得:△ABD的面积为9,△ADC的面积为6,则AC的长度=6×2÷3=4.考点:角平分线的性质7、D【分析】根据∠1+∠2=∠3+∠2即可证得①;根据求出∠1与∠E的度数大小即可判断②;利用∠2求出∠3,与∠B的度数大小即可判断③;利用求出∠1,即可得到∠2的度数,即可判断④.【题目详解】∵∠1+∠2=∠3+∠2=90,∴∠1=∠3,故①正确;∵,∴∠E=60,∴∠1=∠E,∴AC∥DE,故②正确;∵,∴,∵,∴∠3=∠B,∴,故③正确;∵,∴∠CFE=∠C,∵∠CFE+∠E=∠C+∠1,∴∠1=∠E=,∴∠2=90-∠1=,故④正确,故选:D.【题目点拨】此题考查互余角的性质,平行线的判定及性质,熟练运用解题是关键.8、B【分析】根据各象限内点的坐标特征解答.【题目详解】∵-2<0,3>0∴点P(−2,3)在第二象限故选B.【题目点拨】此题考查点的坐标,解题关键在于掌握各象限内点的坐标特征.9、D【解题分析】根据轴对称图形的概念,沿着某条直线翻折,直线两侧的部分能够完全重合的图形是轴对称图形,因此D不是轴对称图形,故选D.10、B【分析】先根据图中是三个等边三角形可知三角形各内角均等于60°,用表示出中间三角形的各内角,再根据三角形的内角和即可得出答案.【题目详解】解:如图所示,图中三个等边三角形,∴,,,由三角形的内角和定理可知:,即,又∵,∴,故答案选B.【题目点拨】本题考查等边三角形的性质及三角形的内角和定理,熟悉等边三角形各内角均为60°是解答此题的关键.11、B【分析】先根据已知条件证明△AEF≌△ABC,从中找出对应角或对应边.然后根据角之间的关系找相似,即可解答.【题目详解】解:在△ABC与△AEF中,,∴△AEF≌△ABC,∴AF=AC,∴∠AFC=∠C;由∠B=∠E,∠ADE=∠FDB,可知:△ADE∽△FDB;∵∠EAF=∠BAC,∴∠EAD=∠CAF,由△ADE∽△FD,B可得∠EAD=∠BFD,∴∠BFD=∠CAF.综上可知:②③④正确.故选:B.【题目点拨】本题主要考查了全等三角形的判定与性质,相似三角形的判定和性质,熟练掌握全等三角形的判定与性质是解决问题的关键.12、D【分析】先提取公因式mn,再对余下的多项式利用完全平方公式继续分解.【题目详解】==.故选:D.【题目点拨】本题主要考查提公因式法分解因式和利用完全平方公式分解因式,难点在于要进行二次分解因式.二、填空题(每题4分,共24分)13、二,四【分析】先根据ab<0确定a、b的正负情况,然后根据各象限点的坐标特点即可解答.【题目详解】解:∵ab<0∴a>0,b<0或b>0,a<0∴点P在第二、四象限.故答案为二,四.【题目点拨】本题主要考查了各象限点的坐标特点,掌握第一象限(+,+)、第二象限(-,+)、第三象限(-,-)、第四象限(+,-)是解答本题的关键.14、重心【解题分析】重心:三角形三条中线交于一点,且重心到顶点的距离与重心到对边中点的距离之比为2:1【题目详解】解:三角形三条中线交于一点,这个点叫做三角形的重心,故答案为:重心.【题目点拨】本题考查的是三角形重心的概念,掌握即可解题.15、70°或40°【分析】分顶角是70°和底角是70°两种情况求解即可.【题目详解】当70°角为顶角,顶角度数即为70°;当70°为底角时,顶角=180°-2×70°=40°.答案为:70°或40°.【题目点拨】本题考查了等腰三角形的性质及三角形内角和定理,属于基础题,若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.16、【分析】当PB垂直于直线时,线段最短,此时会构造一个等腰三角形,利用等腰三角形的性质即可求解.【题目详解】解:如图,当PB垂直于直线时线段最短,设直线与x轴交于点A,则A(-4,0),当时,为等腰直角三角形,作轴于C,则易得C(-1,0),将代入即可求得,;故答案为:.【题目点拨】本题考查的是垂线段最短以及等腰直角三角形的性质,这里根据题意正确添加辅助线即可轻松解题.17、x≠1【解题分析】根据分式有意义的条件——分母不为0进行求解即可得.【题目详解】要使分式有意义,则:,解得:,故x的取值应满足:,故答案为:.【题目点拨】本题考查了分式有意义的条件,熟知分式有意义的条件是分母不为0是解题的关键.18、84或24【解题分析】分两种情况考虑:①当△ABC为锐角三角形时,如图1所示,∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD中,AB=15,AD=12,根据勾股定理得:BD==9,在Rt△ADC中,AC=13,AD=12,根据勾股定理得:DC==5,∴BC=BD+DC=9+5=14,则S△ABC=BC⋅AD=84;②当△ABC为钝角三角形时,如图2所示,∵AD⊥BC,∴∠ADB=90°,在Rt△ABD中,AB=15,AD=12,根据勾股定理得:BD==9,在Rt△ADC中,AC=13,AD=12,根据勾股定理得:DC==5,∴BC=BD−DC=9−5=4,则S△ABC=BC⋅AD=24.综上,△ABC的面积为24或84.故答案为24或84.点睛:此题考查了勾股定理,利用了分类讨论的数学思想,灵活运用勾股定理是解本题的关键.三、解答题(共78分)19、或;【分析】(1)根据平方根,即可解答;
(2)根据立方根,即可解答.【题目详解】解:(1)
或
(2)【题目点拨】本题考查平方根、立方根,解题关键是熟记平方根、立方根的定义.20、11【解题分析】先求出m+n和mn的值,再根据完全平方公式变形,代入求值即可.【题目详解】∵,∴m+n=2,mn=1∴=.【题目点拨】此题考查了二次根式的混合运算法则,完全平方公式的应用,主要考查了学生的计算能力,题目较好.21、(1)证明见详解;(2)4.【分析】(1)由BF,CG分别是的高线,点D是BC的中点,可得:DG=BC,DF=BC,进而得到结论;(2)由是等腰三角形,点E是FG的中点,可得DE垂直平分FG,然后利用勾股定理,即可求解.【题目详解】(1)∵BF,CG分别是的高线,∴CG⊥AB,BF⊥AC,∴△BCG和△BCF是直角三角形,∵点D是BC的中点,∴DG=BC,DF=BC,∴DG=DF,∴是等腰三角形;(2)∵BC=10,∴DF=BC=×10=5,∵是等腰三角形,点E是GF的中点,∴DE⊥GF,EF=GF=×6=3,∴.【题目点拨】本题主要考查直角三角形的性质“直角三角形斜边上的中线等于斜边的一半”,勾股定理以及等腰三角形的判定和性质,结合图形,找出图形中的等腰三角形和直角三角形,是解题的关键.22、(1)a=1;b=2;c=0.10;n=88.5;(2)作图见解析;(3)乙,乙的中位数是85,87>85;(4)1.【分析】(1)根据“频数=总数×频率”求出a,根据“频数之和等于总体”求出b,根据“频数÷总数=频率”求出c,根据中位数的定义,确定第10,11个数值即可求出n;(2)根据b=2,即可补全甲校成绩频数分布直方图;(3)根据中位数的意义即可确定答案;(4)用样本估计总体求出甲校优秀生频率,根据“频数=总数×频率”即可求解.【题目详解】解:(1)a=20×0.05=1,b=20-1-3-8-6=2,c=2÷20=0.10;由甲校频数分布表得共20人,∴中位数为第10,11个数的中位数,第10,11个数均位于组,∴第10,11个数分别为88,89,∴;故答案为:a=1;b=2;c=0.10;n=88.5;(2)补全图甲校学生样本成绩频数分布直方图如图;(3)由甲校成绩为88.5分,估计约有一半学生成绩在88.5分以上,由乙校成绩为85分估计约有一半学生成绩在85分以上,而某学生的成绩是87分,在他所属学校排在前10名,可得该生是乙校学生,故答案为:乙,乙的中位数是85,87>85;(4)200×(0.30+0.40)=1,答:甲校成绩优秀的学生约有1人.【题目点拨】本题考查统计表,频数分布直方图、中位数、用样本估计总体,解答本题的关键是明确频数,频率,总数关系,熟知中位数的意义..23、见解析【分析】根据CE∥DF,可得∠ACE=∠D,再利用SAS证明△ACE≌△FDB,得出对应边相等即可.【题目详解】∵CE∥DF,
∴∠ACE=∠D,
在△ACE和△FDB中,,
∴△ACE≌△FDB(SAS),
∴AE=FB.【题目点拨】本题主要考查了全等三角形的判定与性质和平行线的性质;熟练掌握平行线的性质,证明三角形全等是解决问题的关键.24、(1)y甲=0.6x+400;y乙=x;(2)见解析;(3)学校至少要付出印刷费1600元【解题分析】(1)直接根据题意列式即可;(2)分别找到两个函数与x轴y轴的交点坐标作两个函数的图象即可;(3)当x=2000时,分别求出y甲与y乙,就可得确定学校至少要付出印刷费的数额.【题目详解】解:(1)y甲=0.6x+400;y乙=x(2)如图所示:(3)当x=2000时y甲=0.6×2000+400=1600(元).y乙=2000(元).答:学校至少要付出印刷费1600元.【题目点拨】主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义求解.25、(1)1;(2)36°;(3)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度物流服务合同标的为货物运输与仓储
- 2024年度企业研发合作与技术转让合同
- 调压阀市场需求与消费特点分析
- 玻璃盒市场需求与消费特点分析
- 搓衣板市场发展现状调查及供需格局分析预测报告
- 2024年度新能源技术研发与推广合同
- 2024年度云计算资源租赁与服务合同
- 2024年度东莞市房产买卖合同
- 2024年度企业咨询服务合同标的及服务内容
- 2024年度安徽省统计局统计专业技术人员聘用合同
- 信息化项目施工进度计划及保证措施
- TCI 303-2024 厨余垃圾发酵制备污(废)水处理用碳源
- 中国高血压防治指南(2024版)
- 2024年全新初二生物上册期中试卷及答案(人教版)
- 2024-2030年中国电子俘获探测器(ECD)行业市场发展趋势与前景展望战略分析报告
- 02S515排水检查井图集
- 代卖商品合同协议书
- 安装工程估价智慧树知到期末考试答案章节答案2024年山东建筑大学
- 2024年中考历史(辽宁卷)真题评析
- 厂房屋顶光伏分布式发电项目建议书
- 2024-2030年塔格糖行业市场现状供需分析及重点企业投资评估规划分析研究报告
评论
0/150
提交评论