版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年河北省唐山市高职分类数学备考试卷题库(含答案)学校:________班级:________姓名:________考号:________
一、单选题(50题)1.已知A(1,1),B(-1,0),C(3,-1)三点,则向量AB*向量AC=()
A.-6B.-2C.2D.3
2.若函数f(x)、g(x)的定义域和值域都是R,则f(x)
A.存在一个x₀∈R,使得f(x₀)
B.有无穷多个实数x,使f(x)
C.对R中任意x,都有f(x)+1/2
D.不存在实数x,使得f(x)≥g(x)
3.若函数f(x)=3x²+bx-1(b∈R)是偶函数,则f(-1)=()
A.4B.-4C.2D.-2
4.直线y=x+1与圆x²+y²=1的位置关系是()
A.相切B.相交但直线不过圆心C.直线过圆心D.相离
5.在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“山”的概率为()
A.3/10B.1/10C.1/9D.1/8
6.已知{an}是等比数列,a₁=2,a₂+a₃=24,则公比q的值为()
A.-4或3B.-4或-3C.-3或4D.3或4
7.参加一个比赛,需在4名老师,6名男学生和4名女学生中选一名老师和一名学生参加,不同的选派方案共有多少种?()
A.14B.30C.40D.60
8.设向量a=(x,4),b=(2,-3),若a·b,则x=()
A.-5B.-2C.2D.7
9.已知角α的终边上一点P(-3,4),则cosα的值为()
A.3/5B.4/5C.-3/5D.-4/5
10.在一个口袋中有除了颜色外完全相同的5个红球3个黄球、2个蓝球,从中任意取出5个球,则刚好2个红球、2个黄球、1个蓝球的概率是()
A.2/5B.5/21C.1/2D.3/5
11.下列函数中在定义域内既是奇函数又是增函数的是()
A.y=x-3B.y=-x²C.y=3xD.y=2/x
12.“ab>0”是“a/b>0”的()
A.充分不必要条件B.必要不充分条件C.必要不充分条件D.既不充分也不必要条件
13.已知向量a=(-1,2),b=(0,-1),则a·(-b)=()
A.-2B.2C.-1D.1
14.抛物线y²=8x的焦点为F,抛物线上有一点P的横坐标是1,则点P到焦点F的距离是()
A.2√2B.2C.3D.4
15.函数y=x3−x在x=1处的导数是()
A.2B.3C.4D.5
16.在一个口袋中有2个白球和3个黑球,从中任意摸出2个球,则至少摸出1个黑球的概率是()
A.3/7B.9/10C.1/5D.1/6
17.有2名男生和2名女生,李老师随机地按每两人一桌为他们排座位,一男一女排在一起的概率为()
A.2/3B.1/2C.1/3D.1/4
18.函数f(x)=(√x)²的定义域是()
A.RB.(-∞,0)U(0,+∞)C.(0,+∞)D.[0,+∞)
19.“|x-1|<2成立”是“x(x-3)<0成立”的(
)
A.充分而不必要条件B.充分而不必要条件C.充分必要条件D.既不充分也不必要条件
20.若x,a,2x,b成等差数列,则a/b=()
A.1/2B.3/5C.1/3D.1/5
21.已知函数f(x)=x²-2x+b(b为实数)则下列各式中成立的是()
A.f(1)<f(0)
B.f(0)<f(1)
C.f(0)<f(4)
D.f(1)<f(4)
22.设命题p:x>3,命题q:x>5,则()
A.p是q的充分条件但不是q的必要条件
B.p是q的必要条件但不是q的充分条件
C.p是q的充要条件
D.p不是q的充分条件也不是q的必要条件
23.抛物线y²=-8x的焦点坐标是()
A.(-2,0)B.(2,0)C.(0,-2)D.(0,2)
24.在△ABC中,“cosA=cosB”是“A=B”的()
A.充分条件B.必要条件C.充要条件D.既不是充分也不是必要条件
25.若抛物线y²=2px(p>0)的准线与圆(x-3)²+y²=16相切,则p的值为()
A.1/2B.1C.2D.4
26.X>3是X>4的()
A.充分条件B.必要条件C.充要条件D.即不充分也不必要条件
27.同时掷两枚骰子,所得点数之积为12的概率为()
A.1/12B.1/4C.1/9D.1/6
28.已知角α终边上一点的坐标为(-5,-12),则下列说法正确的是()
A.sinα=12/13B.tanα=5/12C.cosα=-12/13D.cosα=-5/13
29.已知y=f(x)是奇函数,f(2)=5,则f(-2)=()
A.0B.5C.-5D.无法判断
30.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12.设其平均数为a,中位数为b,众数为c,则有().
A.a>b>cB.b>c>aC.c>a>bD.c>b>a
31.设集合A={1,2,3},B={1,2,4}则A的∪B=()
A.{1,2}B.{1,2,3}C.{1,2,4}D.{1,2,3,4}
32.等差数列{an}的前5项和为5,a2=0则数列的公差为()
A.1B.2C.3D.4
33.过点P(1,-1)垂直于X轴的直线方程为()
A.x+1=0B.x-1=0C.y+1=0D.y-1=0
34.下列函数中既是奇函数又是增函数的是()
A.y=2xB.y=2xC.y=x²/2D.y=-x/3
35.扔两个质地均匀的骰子,则朝上的点数之和为5的概率是()
A.1/6B.1/9C.1/12D.1/18
36.若正实数x,y满足2x+y=1,则1/x+1/y的最小值为()
A.1/2B.1C.3+2√2D.3-2√2
37.已知集合A={2,3,4},B={3,4,5},则A∩B()
A.{2,5}B.{2,3,4,5}C.{3,4}D.{3,5}
38.下列函数在区间(0,+∞)上为减函数的是()
A.y=3x-1B.f(x)=log₂xC.g(x)=(1/2)^xD.A(x)=sinx
39.已知f(x)=ax³+bx-4,其中a,b为常数,若f(-2)=2,则f(2)的值等于()
A.-2B.-4C.-6D.-10
40.设a>b,c>d,则下列不等式成立的是()
A.ac>bdB.b+d
d/bD.a-c>b-d
41.已知x,2x+2,3x+3是一个等比数列的前三项,则x的值为()
A.-4或-1B.-4C.-1D.4或1
42.已知向量a=(2,1),b=(3,5),则|2a一b|=
A.2B.√10C.√5D.2√2
43.设定义在R上的函数y=f(x)是奇函数,f(x)在区间(0,+∞)上为增函数,则f(2),f(4),-f(-3)之间的大小关系是()
A.f(2)<-f(-3)
B.f(2)<f(4)<-f(-3)
C.-f(-3)<f(4)
D.f(4)<f(2)<-f(-3)
44.函数=sin(2x+Π/2)+1的最小值和最小正周期分别为()
A.1和2πB.0和2πC.1和πD.0和π
45.某职校从2名女生和3名男生5名优秀中2活动则好1名女1名男生被选中的概率是()
A.1/6B.1/3C.2/5D.3/5
46.向量a=(1,0)和向量b=(1,√3)的夹角为()
A.0B.Π/6C.Π/2D.Π/3
47.“x<1”是”“|x|>1”的()
A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分也不必要条件
48.若y=3x+4表示一条直线,则直线斜率为()
A.-3B.3C.-4D.4
49.双曲线(x²/17)-(y²/8)=1的右焦点的坐标为()
A.(0,5)B.(0,-5)C.(5,0)D.(-5,0)
50.在等比数列{an}中,已知a₃,a₅是方程x²-12x+9=0的两个根,则a₄=()
A.12B.9C.±2√3D.±3
二、填空题(20题)51.将一个容量为n的样本分成3组,已知第1,2组的频率为0.2,0.5,第三组的频数为12,则n=________。
52.甲有100,50,5元三张纸币,乙有20,10元两张纸币,两人各取一张自己的纸币,比较纸币大小,则甲的纸币比乙的纸币小的概率=_________。
53.将一个容量为m的样本分成3组,已知第一组的频数为8,第2、3组的频率为0.15和0.45,则m=________。
54.已知平面向量a=(1,2),b=(-2,m),且a⊥b,则a+b=_________。
55.若等边三角形ABC的边长为2,则,AB·BC=________。
56.已知f(x)=x+6,则f(0)=____________;
57.从1到40这40个自然数中任取一个,是3的倍数的概率是()
58.在等差数列{an}中,a3+a5=26,则S7的值为____________;
59.同时抛掷两枚质地均匀的硬币,则出现两个正面朝上的概率是________。
60.以点(−2,−1)为圆心,且过p(−3,0)的圆的方程是_________;
61.不等式|1-3x|的解集是_________。
62.直线y=ax+1的倾斜角是Π/3,则a=________。
63.设{an}是等差数列,且a₃=5,a₅=9,则a₂·a₆=()
64.已知扇形的圆心角为120,半径为15cm,则扇形的弧长为________cm。
65.已知函数y=f(x)是奇函数,且f(2)=−5,则f(−2)=_____________;
66.已知过抛物线y²=4x焦点的直线l与抛物有两个交点A(x₁,y₁)和B(x₂,y₂)如果x₁+x₂=6,则|AB|=_________。
67.已知函数f(x)是定义R上的奇函数,当x∈(-∞,0)时,f(x)=2x³+x²,则f(2)=________。
68.已知函数y=2x+t经过点P(1,4),则t=_________。
69.已知平面向量a=(1,2),=(一2,1),则a与b的夹角是________。
70.已知点A(1,2)和B(3,-4),则以线段AB为直径的圆的标准方程是________。
三、计算题(10题)71.求函数y=cos²x+sinxcosx-1/2的最大值。
72.已知集合A={X|x²-ax+15=0},B={X|x²-5x+b=0},如果A∩B={3},求a,b及A∪B
73.已知三个数成等差数列,它们的和为9,若第三个数加上4后,新的三个数成等比数列,求原来的三个数。
74.我国是一个缺水的国家,节约用水,人人有责;某市为了加强公民的节约用水意识,采用分段计费的方法A)月用水量不超过10m³的,按2元/m³计费;月用水量超过10m³的,其中10m³按2元/m³计费,超出部分按2.5元/m³计费。B)污水处理费一律按1元/m³计费。设用户用水量为xm³,应交水费为y元(1)求y与x的函数关系式(2)张大爷家10月份缴水费37元,问张大爷10月份用了多少水量?
75.书架上有3本不同的语文书,2本不同的数学书,从中任意取出2本,求(1)都是数学书的概率有多大?(2)恰有1本数学书概率
76.已知在等差数列{an}中,a1=2,a8=30,求该数列的通项公式和前5项的和S5;
77.数列{an}为等差数列,a₁+a₂+a₃=6,a₅+a₆=25,(1)求{an}的通项公式;(2)若bn=a₂n,求{bn}前n项和Sn;
78.在△ABC中,角A,B,C所对应的边分别是a,b,c,已知b=2√2,c=√5,cosB=√5/5。(1)求a的值;(2)求△ABC的面积
79.计算:(4/9)^½+(√3+√2)⁰+125^(-⅓)
80.已知sinα=1/3,则cos2α=________。
参考答案
1.BAB=(-1,0)-(1,1)=(-2,-1),AC=(3,-1)-(1,1)=(2,-2),AB*AC=(-2)*2+(-1)´*(-2)=-2考点:平面向量数量积.
2.D
3.C
4.B圆x²+y²=1的圆心坐标为(0,0),半径长为1,则圆心到直线y=x+1的距离d=1/√2=√2/2,因为0<√2/2<1,所以直线y=x+1与圆x²+y²=1相交但直线不过圆心.考点:直线与圆的位置关系.
5.A
6.A
7.C
8.D
9.C
10.B
11.C
12.C
13.B
14.C
15.A
16.B
17.A
18.D因为二次根式内的数要求大于或等于0,所以x≥0,即定义域为[0,+∞),选D.考点:函数二次根式的定义域
19.B[解析]讲解:解不等式,由|x-1|<2得xϵ(-1,3),由x(x-3)<0得xϵ(0,3),后者能推出前者,前者推不出后者,所以是必要不充分条件。
20.B
21.A
22.B考查充要条件概念,x>5=>x>3,所以p是q的必要条件;又因为x>3=>x>>5,所以p不是q的充分条件,故选B.考点:充分必要条件的判定.
23.A
24.C[解析]讲解:由于三角形内角范围是(0,π)余弦值和角度一一对应,所以cosA=cosB与A=B是可以互相推导的,是充要条件,选C
25.C[解析]讲解:题目抛物线准线垂直于x轴,圆心坐标为(3,0)半径为4,与圆相切则为x=−1或x=7,由于p>0,所以x=−1为准线,所以p=2
26.B
27.C
28.D
29.C依题意,y=f(x)为奇函数,∵f(2)=5,∴f(-2)=-f(2)=-5,故选C.考点:函数的奇偶性应用.
30.D[答案]D[解析]讲解:重新排列10,12,14,14,15,15,16,17,17,17,算得,a=14.7.b=15,c=17答案选D
31.D
32.AS5=(a1+a5)/2=5,a1+a5=2,即2a3=2,a3=1,公差d=a3-a2=1-0=1.考点:等差数列求公差.
33.B
34.Ay=2x既是增函数又是奇函数;y=1/x既是减函数又是奇函数;y=1/2x²是偶函数,且在(-∞,0)上为减函数,在[0,+∞)上为增函数;y=-x/3既是减函数又是奇函数,故选A.考点:函数的奇偶性.感悟提高:对常见的一次函数、二次函数、反比例函数,可根据图像的特点判断其单调性;对于函数的奇偶性,则可依据其定义来判断。首先看函数的定义域是否关于原点对称,如果定义域不关于原点对称,则函数不具有奇偶性;如果定义域关于原点对称,再判断f(-x)=f(x)(偶函数);f(-x)=-f(x)(奇函数)
35.B
36.C考点:均值不等式.
37.C
38.C[解析]讲解:考察基本函数的性质,选项A,B为增函数,D为周期函数,C指数函数当底数大于0小于1时,为减函数。
39.D
40.B本题是选择题可以采用特殊值法进行检验。因为a>b,c>d,所以设B=-1,a=-2,d=2,c=3,故选B.考点:基本不等式
41.B
42.B
43.A
44.D
45.D
46.D
47.B
48.B[解析]讲解:直线斜率的考察,基本形式中x的系数就是直线的斜率,选B
49.C
50.D
51.40
52.1/3
53.20
54.(-1,3)
55.-2
56.6
57.13/40
58.91
59.1/4
60.(x+2)²+(y+1)²=2
61.(-1/3,1)
62.√3
63.33
64.10Π
65.5
66.8
67.12
68.2
69.90°
70.(x-2)²+(y+1)²=10
71.解:y=(1+cos2x)/2+1/2sin2x=√2/2sin(2x+Π/4)所以sin(2x+Π/4)∈[-1,1],所以原函数的最大值为√2/2。
72.因为A∩B={3}又有:9-3a+15=0,得a=89-15+b=0,得b=6所以A={3,5}B={2,3}A∪B={2,3,5}
73.解:设原来三个数为a-d,a,a+d,则(a-d)+a+(a+d)=9所以3a=9,a=3因为三个数为3-d,3,3+d又因为3-d,3,7+d成等比数列所以(3-d)(7+d)=3²所以d=2或d=-6①当d=2时,原来这三个数为1,3,5②当d=-6时,原来三个数为9,3,-3
74.解:(1)y=3x(0≤x≤10)y=3.5x-5(x>10)(2)因为张大爷10月份缴水费为37元,所以张大爷10月份用水量一定超过10m³又因为y=37
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年企业间技术秘密转让与保密合同
- 2024《教育基金赠与合同》
- 2024年度二手挖掘机质量保证合同
- 2024年奶牛养殖收购合同
- 2024年度融资合同融资项目及融资金额
- 2024年建筑工程屋面分包协议
- 2024年度★店铺转让及培训协议
- 2024年度生物医药实验室安装内部承包合同
- 2024年企业间关于物联网技术研发与应用合作协议
- 2024供应链金融借款合同
- 产品在途运输过程中产品质量安全等的监控及保障措施
- ChatGPT的工作原理介绍
- 民航值机服务
- 【一等奖劳动教育案例】《小艾团,大爱心》劳动教育活动案例
- 旅行社运营实务电子课件 2.1 走进旅行社门市
- 燃气热风炉安装使用说明书
- 自我保健随身行下册文字版
- 询比采购文件模板
- 公路工程标准规范清单
- YY/T 0962-2021整形手术用交联透明质酸钠凝胶
- 现代电化学分析
评论
0/150
提交评论