版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
CEPRPOLICYINSIGHTNo.123
October2023
CanweHavePro-WorkerAI?
Choosingapathofmachinesinserviceofminds
DaronAcemoglu,DavidAutor,andSimonJohnson1
MassachusettsInstituteofTechnologyandCEPR
Summary
•Overthepast40years,thediffusionofdigitaltechnologiessignificantlyincreasedincomeinequality.
•GenerativeArtificialIntelligence(AI)willsurelyimpactinequality,butthenatureofthateffectdependsonexactlyhowthistechnologyisdevelopedandapplied.Nothingaboutthepathofthis(orany)technologyisinevitable.
•TheprivatesectorispursuingapathforgenerativeAIthatemphasisesautomationandthedisplacementoflabour,alongwithintrusiveworkplacesurveillance.
•Simplydisplacingworkersisnevergoodforthelabourmarket,evenwhenthedisplacedarehighlypaid.Displacedformerlyhigh-paidworkersareforcedtocompeteforjobswithlower-wageworkers,leadingtoadownwardcascadeinwagelevels.
•Abetterpathisavailable,alongwhichgenerativeAIwouldbecomplementarytomosthumans-augmentingtheircapabilities-includingpeoplewithoutafour-yearcollegedegree.
•Choosingthehuman-complementarypathisfeasiblebutwillrequirechangesinthedirectionoftechnologicalinnovation,aswellasincorporatenormsandbehaviour.
•ThegoalshouldbetodeploygenerativeAItocreateandsupportnewoccupationaltasksandnewcapabilitiesforworkers.IfAItoolscanenableteachers,nursepractitioners,nurses,medicaltechnicians,electricians,plumbers,andothermoderncraftworkerstodomoreexpertwork,thiscanreduceinequality,raiseproductivity,andboostpaybylevellingworkersup.
•Publicpolicyhasacentralroleinencouragingthispositivepathoftechnologytocomplementallworkers,elevatingtheachievablelevelofskillandexpertiseforeveryone.
1Theauthorsareco-directorsoftheMITShapingtheFutureofWorkInitiative,whichwasestablishedthrougha
generousgiftfromtheHewlettFoundation.Thisresearchprogramandrelatedresultswerealsomadepossiblewith
thesupportoftheNOMISFoundation.Acemoglu:InstituteProfessor,MIT;Autor:FordProfessorofEconomics,
MITDepartmentofEconomics;Johnson:KurtzProfessorofEntrepreneurship,MITSloanSchoolofManagement.
Relevantdisclosuresareavailableat
/power-and-progress
,under“PolicySummary.”.
CEPRPOLICYINSIGHTNo.123October2023
2
•Atthistime,thefivemostimportantfederalpoliciesshouldbe:
1.Equalisetaxratesonemployingworkersandonowningequipment/algorithmstoleveltheplayingfieldbetweenpeopleandmachines.
2.UpdateOccupationalSafetyandHealthAdministrationrulestocreatesafeguards(i.e.limitations)onthesurveillanceofworkers.Findingwaystoelevateworkervoiceonthedirectionofdevelopmentcouldalsobehelpful.
3.Increasefundingforhuman-complementarytechnologyresearch,recognisingthatthisisnotcurrentlyaprivatesectorpriority.
4.CreateanAIcentreofexpertisewithinthegovernment,tohelpshareknowledgeamongregulatorsandotherofficials.
5.Usethatfederalexpertisetoadviseonwhetherpurportedhuman-complementarytechnologyisappropriatetoadoptinpubliclyprovided
educationandhealthcareprogrammes,includingatthestateandlocallevel.
Introduction
TheworldisabouttoexperiencetransformativeanddisruptiveadvancesingenerativeArtificialIntelligence.Amajorsetofconcernscentresaroundthelabourmarketandeconomicinequalityimplicationsoftheseadvances.WillAIeliminatejobsinnet?Willitfurtherinflamethedecades-longphenomenonofrisingeconomicinequality?Willitboostlabourearningsorinsteadmakemachinesmorevaluableandworkersmoreexpendable?
Theconsensusintheeconomicliteratureisthatpreviouswavesofdigitaltechnologies–includingpersonalcomputers,numericallycontrolledmachinery,robotics,andofficeautomation–haveincreasedinequality.Thisisbothbecausesomeofthesetechnologies,suchaspersonalcomputers,havebeenhighlycomplementarytomore-educatedworkers(Autoretal.1998,Autoretal.2003,GoldinandKatz2008),andalsobecausemanyofthesetoolshavebeenusedforautomatingwork,withanunequalimpactondifferenttypesofworkers(Autoretal.2003,AcemogluandRestrepo2022a,2022b).Whiledigitaltechnologieshaveundoubtedlycreatednewgoods/servicesandboostedproductivityinsomeactivities(e.g.BrynjolfssonandMcAfee2015),thereisalsoevidencethatproductivitygainsfromthesetechnologieshavesometimesfallenwellbelowexpectations(e.g.Acemogluetal.2016).
GenerativeAIwillhaveasubstantialimpactonthefutureofworkandthetrajectoryofinequality.ThenatureofthatimpactisnotaninevitableconsequenceofthetechnologyitselfbutinsteaddependsonhowsocietydevelopsandshapesAI.
•ThecurrentlypredominantdirectionforAIemphasisesautomation,displacementofskilledlabour,anddiminishedworkervoiceduetostepped-upmonitoringandsurveillance.
•Analternative,“human-complementary”pathcouldcontributemoretoproductivitygrowthandcouldhelpreduceeconomicinequality.
Inthenextsection,weoutlinewhattheautomationpathlookslikeandwhatitsimplicationswouldbeforwork,inequality,andproductivity.Wethendescribethealternativehuman-complementarypath,drawingonbothgeneralprinciplesandspecificexamples.Wealsoexplainwhy,despiteitsadvantages,thehuman-complementaryapproachisnotlikelytoprevailbasedoncurrentinvestmentsandcorporateattitudes.WesuggestpoliciesthatcouldhelpsteerAIdevelopmentandimplementationinthemoreconstructivedirection.
CEPRPOLICYINSIGHTNo.123October2023
3
THEAUTOMATIONPATH
Automation–thesubstitutionofmachinesand,morerecently,algorithmsfortaskspreviouslyperformedbyhumans–hasbeenaconstantsinceatleastthebeginningoftheIndustrialRevolution.Machinesweredevelopedtoperformtasksthathaveahighdegreeofpredictabilityandarecarriedoutinstableenvironments.Examplesincludespinningandweavingintheeighteenth-centurytextileindustry,harvestinginnineteenth-centuryagriculture,andmanyofficeandclericaltasksinthetwentiethcentury,suchastelephoneswitchboardoperationandroutinebookkeeping.Massproduction,whichvastlyreducedthecostofeverydayproducts,dependsfundamentally–thoughnotexclusively–onassemblylinesmadepossiblebyautomation.
Notallautomationishighlyproductive,however.Whenmachinesaredeployedtoperformtasksinwhichtheyarenotparticularlyeffective,lacklustreproductivitygainsfollow.Mostpeoplearefamiliarwiththefrustrationofseekingcustomerservicefromanairline,creditcardprovider,orcomputermanufacturer,onlytobedivertedthroughmazesofunhelpfulcomputermenus.Firmsmayfindsuchautomationtobecost-effective,butitisnotameaningfulproductivityadvance.
Whetherithaslargeorsmalleffectsonproductivity,automationtendstohavemajordistributionalconsequences.Thereasonisthatautomationdisplacesworkerswhowerespecialisedinthetasksthatautomationreallocatestomachinesandalgorithms.Theautomationofblue-collarandofficejobsusingdigitaltechnologieshasbeenanimportantdriveroftheriseininequalitysince1980(AcemogluandRestrepo2022a).
ItisinevitablethatAIsystemswillbeusedforsomeautomation,bothfortechnicalandbusinessstrategyreasons.Onthetechnicalfront,amajorbarriertoautomationofmanyserviceandproductiontaskshasbeenthattheyrequireflexibility,judgment,andcommonsense–thingsthatarenotablyabsentfrompre-AIformsofautomation.Artificialintelligence,especiallygenerativeAI,canpotentiallymastersuchtasks(Susskind2021).AbroadswathofcomputersecuritytasksthatusedtobeperformedbyskilledhumanoperatorscannowbeperformedbyAIbots.Similarly,generativeAIsystemscanwriteadvertisingcopy,parselegaldocuments,transcribephysicians’medicalnotes,andperformlanguagetranslation.Itisunclearhowmuchthistypeofautomationwillcontributetoaggregateproductivitygrowthwhilethesetechnologiesareimmature,buttheycouldcontributetosizeableproductivitygainsascostsfallandreliabilityimproves.
Businessesmaychoosemachinesoverworkersforreasonsotherthanproductivity.Automationappealstomanagerswhoareseekinggreaterconsistencyandlessoppositionfromorganisedorunorganisedlabour(AcemogluandJohnson2023).
Alltoooften,businessesprefertofocusonautomationratherthancreatingnewjobtasksandenablingworkerstobuildnewskills.Automationisalwaysaneasycaseforamanagertomakebecauseitappearstosavecosts.Investingtomakeworkersmoreproductiveormoreusefulmaybeahardersell,sinceit’sseenasmessy,uncertain,andexpensive.Somemanagerssimplypreferto“hiremachines”,ratherthanhiringworkers,becausemachinesdon’tcomplainaboutpayorworkingconditions,andtheycertainlydon’tjoinunions.Butacountryisnotabusiness.Wehaveasharedinterestinensuringthatadultsareproductivelyemployed.Thispromoteseconomicresilience,socialcohesion,andastrongtaxbase.Policymakerscaremoreaboutthequalityandquantityofjobsthandoemployers,andpolicyshouldsupportinstitutions,incentives,andinvestmentswiththisinmind.
CEPRPOLICYINSIGHTNo.123October2023
4
Beyondeconomicincentives,thedominantintellectualparadigmintoday’sdigitaltechsector–amongbothbusinessleadersandacademicresearchers–favourstheautomationpath.AmajorfocusofAIresearchistoattainhumanparityinavastrangeofcognitivetasksand,moregenerally,toachieve“artificialgeneralintelligence”thatfullymimicsandthensurpassescapabilitiesofthehumanmind.Thisintellectualfocusencouragesautomationratherthanthedevelopmentofhuman-complementarytechnologies(AcemogluandJohnson2023).
Thereisawidelysharedoptimismthathuman-replacingautomationwillproducesomuchproductivitygainthatalltypesofworkerswillbenefit.Itistruethatifautomationissufficientlyproductive(andthusreducescostsbyasignificantamount),thiscangeneratedemandforothergoodsandservicesand,asaresult,workersmaybenefitaswell.
However,whileproductivitygainsareobviouslywelcome,therearetwoproblemswiththislineofthought.First,thebenefitsmaybehighlyunequallydistributedacrossdifferentskillgroups.Forexample,AI-basedproductivitygainsmightincreasethedemandforso-called“promptengineers”,butthiswouldnothelpworkersdisplacedfromaccountingorfinancialservicesjobs–assumingtheydonothaveacomparativeadvantageinpromptengineering(AcemogluandAutor2011,AcemogluandRestrepo2022a).Second,automationtendstoreducethelabourshareofnationalincome,soevenifworkersbenefit,mostofthegainsflowtoentrepreneursandcapitalowners(AcemogluandRestrepo2018).Therearelimitstohowmuchsharedprosperitycanbegeneratedexclusivelybyautomation.
Anothercommonpredictionisthat,becausegenerativeAImayautomatemanagerialorknowledgetaskstypicallyperformedbyprofessionalworkers,itcouldhaveequalisingeffects.Forinstance,ifaccountantsandfinancialanalystslosetheirjobs,thismightreduceinequalitybetweenretailworkersandhighlypaidfinancialsectorworkers.Thislogicisfaulty.Studiesofpreviouswavesofdigitalautomationshowthatworkersdirectlydisplacedbynewtechnologiesnotonlyexperiencelowerpaygrowthbutalsostartcompetingwithothergroupsoflower-paidworkers,whosepaythendeclines(e.g.AcemogluandRestrepo2022a).Simplyput,displacingworkerswillneverbegoodforworkersorforthelabourmarket.Instead,AIcanreduceinequalityifitenableslower-rankedworkerstoperformmorevaluablework–butnotifitmerelyknocksrungsoutoftheexistingjobladder.
TheHumanComplementaryPath
Newtechnologiesneednotmerelyreplaceworkersinexistingtasks.Theymayalsocomplementworkersbyenablingthemtoworkmoreefficiently,performhigher-qualitywork,oraccomplishnewtasksthatwerepreviouslyinfeasible(AcemogluandRestrepo2018,Autoretal.2022,AcemogluandJohnson2023).Forexample,evenasmechanisationgraduallypushedmorethanhalfoftheUSlabourforceoutofagriculture,arangeofnewblue-collarandclericaltasksinfactoriesandnewlyemergingserviceindustriesgeneratedsignificantdemandforskilledlabour.Theexpansionofemploymentinindustryandservicesbetween(roughly)theyears1870and1970ledtoworkthatwasnotonlybetterpaidbutalsolessdangerousandlessphysicallyexhausting,andincreasinglyrewardedtheformalliteracyandnumeracyskillscreatedbytheexpansionofuniversalpublichighschooleducation.
Thisvirtuouscombination-automationoftraditionalworkalongsidecreationofnewtasks–proceededinrelativebalanceformuchofthetwentiethcentury.Butsometimeafterapproximately1970,thisbalancewaslost.Whileautomationhasmaintaineditspaceorevenacceleratedovertheensuingfivedecades,theoffsettingforceofnew
CEPRPOLICYINSIGHTNo.123October2023
5
taskcreationhasslowed,particularlyforworkerswithoutfour-yearcollegedegrees(AcemogluandRestrepo2019,Autoretal.2022).Non-collegeworkershavebeendisplacedfromfactoriesandofficesbycomputerisationand,forblue-collarworkers,alsobyimportcompetition(Autoretal.2013),butnonewequivalentlywell-paidopportunitieshaveemergedtoattracttheseworkers.Asaresult,non-collegeeducatedworkersareincreasinglyfoundinlow-paidservicessuchascleaning,security,foodservice,recreation,andentertainment.Thesejobsaresociallyvaluable,buttheyrequirelittlespecialisededucation,training,orexpertise,andhencepaypoorly.
ThecriticalquestionwefaceintheneweraofgenerativeAIiswhetherthistechnologywillprimarilyacceleratetheexistingtrendofautomationwithouttheoffsettingforceofgoodjobcreation–particularlyfornon-collegeworkers–orwhetheritwillinsteadenabletheintroductionofnewlabour-complementarytasksforworkerswithdiverseskillsetsandawiderangeofeducationalbackgrounds.
Thereisacaseforqualifiedoptimism:generativeAIoffersanopportunitytocomplementworkerskillandexpertise.
Becausesomanyoftheroutinetasksthatworkerspreviouslyperformedhavealreadybeenautomated,alargefractionofcurrentjobsrequirenon-routineproblem-solvinganddecision-makingtasks.Empoweringworkerstoperformthesetasksmoreeffectively,andtoaccomplishevenmoresophisticateddecision-makingtasks,willrequireprovidingworkerswithbetterinformationanddecision-supporttools.GenerativeAIisparticularlywell-suitedtothistypeofinformationprovision.Anironyoftoday’sinformationeraisthatpeopleareoverwhelmedbyinformationbutoftenlackthetimeandexpertisetoparsethisinformationeffectively.GenerativeAIisparticularlywell-suitedtoaddressthisproblem.Withproperdevelopment,AItoolscanhelpsurfacerelevantinformationattherighttimetoenablebetterdecision-making.
Additionally,andcloselyrelated,humanproductivityisoftenhamperedbylackofspecificknowledgeorexpertise,whichcouldbereadilysupplementedbyAI.Forexample,anelectricianmightbeunabletodiagnosearareproblemthatshecouldreadilyaddressifgivenrelevanttoolsorappropriatetraining.OrahighlytrainedimmigranttotheUSmaybeinhibitedfromfullyusingherabilitiesbecauseoflimitedEnglishlanguageskills.GenerativeAItoolscanassistinsuchcasesbyboostinghumanexpertise,supportingworkersinunfamiliarsituations,providingon-the-spottraining,andimprovingallformsofinformationtranslation.Overall,AIholdsgreatpotentialfortrainingandretrainingexpertworkers,suchaseducators,medicalpersonnel,softwaredevelopers,andotherworkerswithmodern“crafts”(suchaselectriciansandplumbers).
Finally,whilegenerativeAImaytakeovermoreoftheoperationaltasksincertainoccupations,suchasaccounting,financialanalysis,orcomputerprogramming,ifdevelopedintherightmanner,itcouldcreatenewdemandsforhumanexpertiseandjudgmentinoverseeingtheseprocesses,communicatingwithcustomers,andenablingmoresophisticatedservicesthatleveragethesetools.
Severalrecentstudiesprovide“proof-of-concept”examplesthatdemonstratehowgenerativeAIcansupplementexpertiseratherthandisplaceexperts.Pengetal.(2023)demonstratethatGitHubCopilot,agenerativeAI-basedprogrammingaid,cansignificantlyincreaseprogrammerproductivity.2Inacontrolledexperiment,
2
/features/copilot
October2023
CEPRPOLICYINSIGHTNo.123
6
thetreatmentgroupthatwasgivenaccesstothisgenerativeAItoolcompletedtherequiredprogrammingtaskabout56%fasterthanthecontrolgroupwithoutaccesstoCopilot.
NoyandZhang(2023)performedarelatedonlinerandomisedcontrolledtrial,focusedonwritingtasks.Amongthesetofwhite-collarworkersrecruitedforthestudy,halfwererandomlygivenaccessto(andencouragedtouse)ChatGPTforwritingtasks.NoyandZhang(2023)foundsignificantimprovementsinthespeedandqualityofwritingoutput.Mostimportantly,thebiggestimprovementswereconcentratedamongtheleast-capablewriters.AlthoughgenerativeAIdidnotmaketheleast-skilledwritersaseffectiveasthemost-skilledwriters,itmadeallwritersfasterandsubstantiallyreducedthequalitygapbetweenthetwogroups.
Finally,Brynjolfssonetal.(2023)evaluatedtheuseofgenerativeAItoolsusedforprovidingbackgroundinformationtocustomerserviceagents.Theyalsoestimatedasignificantimprovement(about14%)inproductivity,andlikeNoyandZhang’sstudy,thesegainswerethemostpronouncedfornoviceworkers.UsingtheseAItools,noviceworkerswereabletoreachalevelofproficiencywithinthreemonthsthatpreviouslytookworkerstenmonthstoattain.
Inallthreecases,generativeAItoolsautomateandaugmenthumanworksimultaneously.Theautomationstemsfromtime-savings:AIwritesthefirstdraftofcomputercode,advertisingcopy,andcustomersupportresponses.AugmentationhappensbecauseworkersarecalledupontoapplyexpertiseandjudgmenttointermediatebetweentheAI’ssuggestionsandthefinalproduct–whetheritissoftware,text,orcustomersupport.
PromisingApplications
Lookingforward,weseeatleastthreemajorsectorswherehuman-complementaryAIcouldbetransformative,bothforproductivityandforsharedprosperity.
EDUCATION
GenerativeAItoolscanenablemajoradvancementsineducation,togetherwithnewproductivity-enhancingrolesforeducators.Classroominstructionishinderedbythefactthattheteachermustchooseonepaceatwhichanentireclassproceeds,evenifitistoofastforsomestudentsandtooslowforothers.Individualisededucationprogrammesandpersonalisedteachingtoolscanbeeffectiveinenablinglesspreparedstudentstoexcel,butthesetoolsarelabour-intensiveandhenceexpensive.AI-enabledtoolshavethepotentialtovastlyimprovetutoringandself-instruction.
Khanmigo,anappbuiltonChatGPT-4,isaninfinitelypatient,highlyadaptabletutorthatcanbreakcomplexproblemsintotheirconstituentparts,walkstudentsstep-by-stepthroughsolvingthem,andprovidehintsandexamplesalongthewaywithoutdirectlyansweringquestions.3ResearchshowsthatLargeLanguageModels(LLMs)cananticipatewhichpartsofaproblemhumanswillfinddifficultandsuggestsimplificationstoimproveunderstanding(seeBubecketal.2023).
Thesetechnologiescansupporteducatorsaswellasstudents.Teacherscouldfocusmoreoftheirtimeoninstructionandlessonremediation.Theycoulddevelopricherlessonplansthatharnessnewtools,suchasvisualisation,simulation,andeven
3
/khan-labs#khanmigo
October2023
CEPRPOLICYINSIGHTNo.123
7
real-time“interaction”withfictitiousorhistoricalfigures.TherightAIinvestmentscouldenablesignificantgainsinstudentlearning,especiallyamongcurrentlyunderperformingpupils.Suchreorganisationwouldalsocreatearangeofnewtasksforeducators-andwouldalmostcertainlynecessitatefurtherproductivetrainingforexistingteachersandhiringofadditionalAI-savvyteachers.
Itisnotclear,however,thattheprivatesector(oranypublicschooldistrict)hastherightincentivestodevelopsuchAItools.WillAIbedevelopedtoreducegapsbetweenmore-capableandless-capablelearners–asChatGPTdoesforprofessionalwriters–orwillitinsteadbedeployedtoreduceteacherheadcountsandsubstituteforpersonalattention?Thisisnotaquestionofwhatthetechnologycandobuthowwecollectivelydecidetodevelopanddeployit.ApplicationsofAIthatappeartoreducelabourcostsmaybemoreappealingtomanycash-strappedschooldistrictsintheUnitedStates.Thus,ourconcernisthatAIwillbeusedtoautomateteaching,testing,andgrading,ratherthanfornewpersonalisededucation-targetingtasks.
HEALTHCARE
GiventhatoneinfiveUSdollarsisspentonhealthcare,anytechnologythatimprovesefficiency,lowerscosts,orbroadensaccesstothehealthcaresystemhaspotentiallyenormousbenefits.GenerativeAItoolscanimprovehealthcaredeliveryandaccessibility,enablingproductivitygainsandgeneratingvaluablenewworkertasks.Forexample,generativeAItoolscouldsupportexpandingscopeofpracticeboundaries,enablingmedicalprofessionalsatalllevelstoaccomplishabroaderrangeoftasks.Justasnursepractitionershaveprovedeffectiveatdiagnosing,prescribing,andtreating(Asubontengetal.1995,Lietal.2012)–tasksformerlydoneexclusivelybydoctors–thedecision-supportcapacitiesofAIcanenablealargersetoftrainedmedicalprofessionalstoaccomplishexperttaskswithoutexclusivelyrelyingonthemostelitemedicalprofessionals.UsingAI,qualifiednursepractitioners,nurses,andhealthtechnicianscoulddiagnoseroutinehealthproblems,recommendcoursesoftreatment,andmoreefficientlyroutepatientstofurthercareoptions.
MODERNCRAFTWORKERS(MCWS)
Inlinewiththeelectricianexampleabove,generativeAItoolscanbetransformativeformoderncraftworkers(MCWs)morebroadly.4TheUSiscurrentlyundertakingamajorinfrastructureinvestmentagenda,withgrowingemploymentinmanufacturing,greenenergyproduction,andchipproduction,amongothersectors.SkilledMCWsareinshortsupplyduetoanagingpopulationanddecadesofover-investmentinhighereducationattheexpenseofvaluablevocationaltraining.AIcanbeusedtosupporttrainingandenableMCWstocarryoutawiderrangeoftasksthatrequirespecialisedexpertise.AIcanproviderelevantinformation,real-timeinstruction,anddecision-makingsupportinelectricalwork,plumbing,expertrepair,design,andconstruction,amongotheractivities.ThecurrentgenerationofAItechnologiescannotreplacetheworkofMCWs–whosetasksrequiredexterity,flexibility,andjudgmentthatarefarbeyondthegraspofcurrentrobotics(evenAI-enhancedrobotics).ButAIcanenabletheseworkerstodomorewiththeirskillsbysolvingabroaderanddeeperrangeofappliedproblemsinthefield.
4Alsoknownas“moderntrades”or“tradespeople”.
CEPRPOLICYINSIGHTNo.123October2023
8
WhatCanBeDone
Taxsystem:ThecurrentUStaxcodeplacesaheavierburdenonfirmsthathirelabourthanthosethatinvestinalgorithmstoautomatework(Acemogluetal.2020).Weshouldaimtocreateamoresymmetrictaxstructure,wheremarginaltaxesforhiring(andtraining)labourandforinvestinginequipment/softwareareequated.Thiswillshiftincentivestowardhuman-complementarytechnologicalchoicesbyreducingthebiasofthetaxcodetowardphysicalcapitaloverhumancapital.
Labourvoice:ThedirectionofAIwillhaveprofoundconsequencesforallworkers.Creatinganinstitutionalframeworkinwhichworkersalsohaveavoicewouldbeaconstructivestep–andthereisanimportantroleforcivilsocietyinpressingforthistohappen,includingthrougharticulatingneedsatthelocalandstatelevel.Ataminimum,federalgovernmentpolicyshouldrestrictdeploymentofuntested(orinsufficientlytested)AIforapplicationsthatcouldputworkersatrisk–forexample,inhigh-stakespersonneldecision-makingtasks(includinghiringandtermination)orinworkplacemonitoringandsurveillance.Healthandsafetyrulesneedtobeupdatedaccordingly.
Fundingformorehuman-complementaryresearch:Giventhatthecurrentpathofresearchhasabiastowardautomation,additionalsupportfortheresearchanddevelopmentofhuman-complementaryAItechnologiescouldhavesignificantimpact.Itishardtotargethuman-complementaryworkintheabstract.Itisfeasible,however,tofocusonspecificsectorsandactivitieswhereopportunitiesarealreadyabundant.Theseincludeeducation,healthcare,andMCWtraining.JustasDARPAorchestratedinvestmentsandcompetitionstofosterthedevelopmentofself-drivingcarsanddexterousrobotics,thefederalgovernmentshouldfostercompetitionandinvestmentthatpairsAItoolswithhumanexpertise,aimingtoimproveworkinvitalsocialsectors.
AIexpertisewithinthefederalgovernment:AIwilltoucheveryareaofgovernmentinvestment,regulation,andoversight,including(butnotlimitedto):transportation,energyproduction,labourconditions,healthcare,education,environmentalprotection,publicsafety,andmilitarycapabilities.Developing
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度环保工程财产保全担保协议3篇
- 甘肃2025年甘肃省中医药研究院招聘高层次人才3人笔试历年参考题库附带答案详解
- 2025版智慧医疗健康项目承包服务合同2篇
- 昆明2025年云南昆明市五华区云铜中学合同制教师招聘笔试历年参考题库附带答案详解
- 新疆2025年新疆昌吉州引进人才65人笔试历年参考题库附带答案详解
- 2025年度个人住房公积金贷款合同(异地购房)4篇
- 2024年沪科新版九年级历史上册月考试卷
- 2025年浙教版九年级地理下册阶段测试试卷
- 2025年粤教沪科版八年级历史上册月考试卷
- 2025年度个人二手房翻新装修工程合同书
- 我的消防文员职业规划
- 2024年世界职业院校技能大赛高职组“市政管线(道)数字化施工组”赛项考试题库
- 介绍蝴蝶兰课件
- CSC资助出国博士联合培养研修计划英文-research-plan
- 《环境管理学》教案
- 《阻燃材料与技术》课件 第5讲 阻燃塑料材料
- 2025年蛇年年度营销日历营销建议【2025营销日历】
- (一模)宁波市2024学年第一学期高考模拟考试 数学试卷(含答案)
- 金蛇纳瑞企业2025年会庆典
- 安保服务评分标准
- T-SDLPA 0001-2024 研究型病房建设和配置标准
评论
0/150
提交评论