2024届河南省重点中学八上数学期末预测试题含解析_第1页
2024届河南省重点中学八上数学期末预测试题含解析_第2页
2024届河南省重点中学八上数学期末预测试题含解析_第3页
2024届河南省重点中学八上数学期末预测试题含解析_第4页
2024届河南省重点中学八上数学期末预测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河南省重点中学八上数学期末预测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.在平面直角坐标系中,点P(3,﹣2)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.下列各式中,是分式的是()A. B. C. D.3.如图,、是的外角角平分线,若,则的大小为()A. B. C. D.4.“绿水青山就是金山银山”,为了加大深圳城市森林覆盖率,市政府决定在2019年3月12日植树节前植树2000棵,在植树400棵后,为了加快任务进程,采用新设备,植树效率比原来提升了25%,结果比原计划提前5天完成所有计划,设原计划每天植树x棵,依题意可列方程()A.B.C.D.5.等于()A. B. C. D.6.如图所示,已知点A(﹣1,2)是一次函数y=kx+b(k≠0)的图象上的一点,则下列判断中正确的是()A.y随x的增大而减小 B.k>0,b<0C.当x<0时,y<0 D.方程kx+b=2的解是x=﹣17.用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设A.三角形的三个外角都是锐角B.三角形的三个外角中至少有两个锐角C.三角形的三个外角中没有锐角D.三角形的三个外角中至少有一个锐角8.交通警察要求司机开车时遵章行驶,在下列交通标志中,不是轴对称图形的是()A. B. C. D.9.如图,直线l1:y=ax+b和l2:y=bx﹣a在同一坐标系中的图象大致是()A. B.C. D.10.如图,一棵树在一次强台风中,从离地面5m处折断,倒下的部分与地面成30°角,这棵树在折断前的高度是()A.5m B.10m C.15m D.20m二、填空题(每小题3分,共24分)11.命题“三角形的三个内角中至少有两个锐角”是_____(填“真命题”或“假命题”).12.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为__________.13.计算:.14.“宝剑锋从磨砺出,梅花香自苦寒来”喻义要想拥有珍贵品质或美好才华等是需要不断的努力、修炼、克服一定的困难才能达到的据有关资料显示,梅花的花粉直径大约是0.00002米,数字0.00002用科学记数法表示为______15.如果式子在实数范围内有意义,那么x的取值范围是____.16.分解因式:_________________.17.教材上“阅读与思考”曾介绍“杨辉三角”(如图),利用“杨辉三角”展开(1﹣2x)4=a0+a1x+a2x2+a3x3+a4x4,那么a1+a2+a3+a4=_____.18.当时,分式无意义,则_________.三、解答题(共66分)19.(10分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)试判断四边形ADCF的形状,并证明;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明.20.(6分)如图,是上一点,与交于点,,.线与有怎样的数量关系,证明你的结论.21.(6分)如图,正方形的边长为2,点为坐标原点,边、分别在轴、轴上,点是的中点.点是线段上的一个点,如果将沿直线对折,使点的对应点恰好落在所在直线上.(1)若点是端点,即当点在点时,点的位置关系是________,所在的直线是__________;当点在点时,点的位置关系是________,所在的直线表达式是_________;(2)若点不是端点,用你所学的数学知识求出所在直线的表达式;(3)在(2)的情况下,轴上是否存在点,使的周长为最小值?若存在,请求出点的坐标:若不存在,请说明理由.22.(8分)已知:在△ABC中,∠BAC=90°,AB=AC,点D为射线BC上一动点,连结AD,以AD为一边且在AD的右侧作正方形ADEF.(1)当点D在线段BC上时(与点B,C不重合),如图1,求证:CF=BD;(2)当点D运动到线段BC的延长线上时,如图2,第(1)问中的结论是否仍然成立,并说明理由.23.(8分)某市计划进行一项城市美化工程,已知乙队单独完成此项工程比甲队单独完成此项工程多用10天,且甲队单独施工30天和乙队单独施工45天的工作量相同.(1)甲、乙两队单独完成此项工作各需多少天?(2)已知甲队每天的施工费用为8000元,乙队每天的施工费用为6000元.为了缩短工期,指挥部决定该工程由甲、乙两队一起完成.则该工程施工费用是多少元?24.(8分)某工程队承建一所希望学校,在施工过程中,由于改进了工作方法,工作效率提高了,因此比原定工期提前个月完工.这个工程队原计划用几个月的时间建成这所希望学校?25.(10分)如图,已知点B、E、C、F在一条直线上,AB=DF,AC=DE,∠A=∠D(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.26.(10分)列方程解应用题:为了迎接春运高峰,铁路部门日前开始调整列车运行图,2015年春运将迎来“高铁时代”.甲、乙两个城市的火车站相距1280千米,加开高铁后,从甲站到乙站的运行时间缩短了11小时,大大方便了人们出行.已知高铁行驶速度是原来火车速度的3.2倍,求高铁的行驶速度.

参考答案一、选择题(每小题3分,共30分)1、D【解题分析】坐标系中的四个象限分别为第一象限(x>0,y>0);第二象限(x>0,y<0);第三象限(x<0,y<0);第四象限(x<0,y<0).所以P在第四象限.2、C【解题分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【题目详解】∵没有分母,、分母中不含字母,这三个代数式均为整式;分母中含有字母,是分式.∴选C故选:C【题目点拨】本题考查了分式的定义,属基础题,正确熟练掌握分式定义是解此题的关键.3、B【分析】首先根据三角形内角和与∠P得出∠PBC+∠PCB,然后根据角平分线的性质得出∠ABC和∠ACB的外角和,进而得出∠ABC+∠ACB,即可得解.【题目详解】∵∴∠PBC+∠PCB=180°-∠P=180°-60°=120°∵、是的外角角平分线∴∠DBC+∠ECB=2(∠PBC+∠PCB)=240°∴∠ABC+∠ACB=180°-∠DBC+180°-∠ECB=360°-240°=120°∴∠A=60°故选:B.【题目点拨】此题主要考查角平分线以及三角形内角和的运用,熟练掌握,即可解题.4、D【分析】根据题目中的数量关系,可以列出相应的分式方程,从而可以解答本题.【题目详解】解:根据“结果比原计划提前5天完成所有计划”可得:=5,故选:D.【题目点拨】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的分式方程.5、D【解题分析】根据负整数指数幂的运算法则计算即可.【题目详解】解:.故选:D.【题目点拨】本题考查了负整数指数幂的运算法则,属于应知应会题型,熟知负整数指数幂的运算法则是解题关键.6、D【分析】根据一次函数的性质判断即可.【题目详解】由图象可得:A、y随x的增大而增大;B、k>0,b>0;C、当x<0时,y>0或y<0;D、方程kx+b=2的解是x=﹣1,故选:D.【题目点拨】考查了一次函数与一元一次方程的关系,一次函数图象与系数的关系,正确的识别图象是解题的关键.7、B【分析】反证法的步骤中,第一步是假设结论不成立,反面成立.【题目详解】解:用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设三角形的三个外角中至少有两个锐角,故选B.【题目点拨】考查了反证法,解此题关键要懂得反证法的意义及步骤在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.8、C【分析】根据轴对称图形的定义,逐一判断选项,即可.【题目详解】∵A是轴对称图形,∴A不符合题意,∵B是轴对称图形,∴B不符合题意,∵C不是轴对称图形,∴C符合题意,∵D是轴对称图形,∴D不符合题意,故选C.【题目点拨】本题主要考查轴对称图形的定义,掌握轴对称图形的定义,是解题的关键.9、C【分析】根据各选项中的函数图象可知直线l1:y=ax+b经过第一、二、三象限,从而判断出a、b的符号,然后根据a、b的符号确定出l2:y=bx﹣a的图象经过的象限,选出正确答案即可.【题目详解】解:∵直线l1:经过第一、三象限,∴a>1,∴﹣a<1.又∵该直线与y轴交于正半轴,∴b>1.∴直线l2经过第一、三、四象限.在四个选项中只有选项C中直线l2符合,故选C.【题目点拨】本题考查了一次函数的图象,一次函数y=kx+b(k≠1),k>1时,一次函数图象经过第一三象限,k<1时,一次函数图象经过第二四象限,b>1时与y轴正半轴相交,b<1时与y轴负半轴相交.10、C【分析】根据30°所对的直角边是斜边的一半,得斜边是10,从而求出大树的高度.【题目详解】如图,在Rt△ABC中,∠BCA=90°,CB=5,∠BAC=30°,∴AB=10,∴大树的高度为10+5=15(m).故选C.【题目点拨】本题考查了直角三角形的性质:30°所对的直角边等于斜边的一半,掌握这条性质是解答本题的关键.二、填空题(每小题3分,共24分)11、真命题【分析】根据三角形内角和为180°进行判断即可.【题目详解】∵三角形内角和为180°,∴三角形的三个内角中至少有两个锐角,是真命题;故答案为真命题.【题目点拨】本题考查命题与定理.判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.12、5.6×10-2【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】解:将0.056用科学记数法表示为5.6×10-2,故答案为:5.6×10-2【题目点拨】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13、1【解题分析】试题分析:先化为同分母通分,再约分:.14、2×10-5【解题分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】0.00002=2×10-5,故答案为:2×10-5【题目点拨】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.15、【分析】根据二次根式由意义的条件是:被开方数大于或等于0,即可求解.【题目详解】由题意得:,解得:,故答案为:.【题目点拨】本题考查了二次根式有意义的条件,熟练掌握二次根式的被开方数是非负数是解题的关键.16、【分析】提出负号后,再运用完全平方公式进行因式分解即可.【题目详解】.故答案为:.【题目点拨】此题主要考查了运用完全平方公式进行因式分解,熟练掌握完全平方公式的结构特征是解题的关键.17、1【分析】令求出的值,再令即可求出所求式子的值.【题目详解】解:令,得:,令,得:,则,故答案为:1.【题目点拨】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.18、-1【分析】根据分式无意义的条件是分母为零即可解答.【题目详解】解:∵当时,分式无意义,∴当时,分母为零,即,解得a=-1,故答案为:-1.【题目点拨】本题考查了分式无意义的条件,解题的关键是熟知分式无意义的条件是分母为零.三、解答题(共66分)19、(1)四边形CDAF是平行四边形,理由详见解析;(2)四边形ADCF是菱形,证明详见解析.【解题分析】(1)由E是AD的中点,过点A作AF∥BC,易证得△AFE≌△DBE,然后证得AF=BD=CD,即可证得四边形ADCF是平行四边形;(2)由AB⊥AC,AD是BC边上的中线,可得AD=CD=12BC,然后由四边形ADCF是平行四边形,证得四边形ADCF【题目详解】(1)解:四边形CDAF是平行四边形,理由如下:∵E是AD的中点,∴AE=ED,∵AF∥BC,∴∠AFE=∠DBE,∠FAE=∠BDE,在△AFE和△DBE中,∠AFE=∠DBE∠FAE=∠BDE∴△AFE≌△DBE(AAS),∴AF=BD,∵AD是BC边中线,∴CD=BD,∴AF=CD,∴四边形CDAF是平行四边形;(2)四边形ADCF是菱形,∵AC⊥AB,AD是斜边BC的中线,∴AD=12BC=DC∵四边形ADCF是平行四边形,∴平行四边形ADCF是菱形.【题目点拨】此题考查了平行四边形的判定与性质、全等三角形的判定与性质、直角三角形的性质以及菱形的判定.注意掌握直角三角形斜边上的中线等于斜边的一半定理的应用是解此题的关键.20、,证明详见解析【解题分析】利用平行线的性质求得,然后利用ASA定理证明,从而使问题求解.【题目详解】证明:∵∴又∵,∴(ASA)∴【题目点拨】本题考查平行线的性质,全等三角形的判定和性质,题目比较简单,掌握两直线平行,内错角相等及ASA定理证明三角形全等是解题关键.21、(1)A,y轴;B,y=x;(2)y=3x;(3)存在.由于,理由见解析.【解题分析】(1)由轴对称的性质可得出结论;

(2)连接OD,求出OD=,设点P(,2),PA′=,PC=,CD=1.可得出()2=(2)2+12,解方程可得解x=.求出P点的坐标即可得出答案;

(3)可得出点D关于轴的对称点是D′(2,-1),求出直线PD′的函数表达式为,则答案可求出.【题目详解】(1)由轴对称的性质可得,若点P是端点,即当点P在A点时,A′点的位置关系是点A,

OP所在的直线是y轴;

当点P在C点时,

∵∠AOC=∠BOC=45°,

∴A′点的位置关系是点B,

OP所在的直线表达式是y=x.

故答案为:A,y轴;B,y=x;

(2)连接OD,

∵正方形AOBC的边长为2,点D是BC的中点,

∴OD=.

由折叠的性质可知,OA′=OA=2,∠OA′D=90°.

∵OA′=OA=OB=2,OD公共,∴(),∴A′D=BD=1.

设点P(,2),则PA′=,PC=,CD=1,

∴,即()2=()2+12,

解得:.

所以P(,2),设OP所在直线的表达式为,将P(,2)代入得:,解得:,

∴OP所在直线的表达式是;

(3)存在.若△DPQ的周长为最小,

即是要PQ+DQ为最小,作点D关于x轴的对称点是D′,连接D′P交x轴于点Q,此时使的周长取得最小值,

∵点D关于x轴的对称点是D′(2,),

∴设直线PD'的解析式为,

解得,

∴直线PD′的函数表达式为.

当时,.

∴点Q的坐标为:(,0).【题目点拨】本题是一次函数与几何的综合题,考查了轴对称的性质,待定系数法求函数解析式,勾股定理,最短路径,正方形的性质.解题关键是求线段和最小值问题,其基本解决思路是根据对称转化为两点之间的距离的问题.22、(1)见解析;(2)仍然成立,理由见解析【分析】(1)要证明CF=BD,只要证明△BAD≌△CAF即可,根据等腰三角形的性质和正方形的性质可以证明△BAD≌△CAF,从而可以证明结论成立;(2)首先判断CF=BD仍然成立,然后根据题目中的条件,同(1)中的证明方法一样,本题得以解决.【题目详解】(1)证明:∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∴∠DAC+∠CAF=90°,∵∠BAC=90°,∴∠DAC+∠BAD=90°,∴∠BAD=∠CAF,在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴BD=CF,即CF=BD;(2)当点D运动到线段BC的延长线上时,如图2,第(1)问中的结论仍然成立.理由:∵∠BAC=∠DAF=90°,∴∠BAC+∠CAD=∠DAF+∠CAD,∴∠BAD=∠CAF,在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴BD=CF,即CF=BD.【题目点拨】本题考查了正方形的性质、等腰三角形的性质和全等三角形的判定与性质,此题难度适中,注意利用公共角转化角相等作为证明全等的条件.23、(1)甲单独完成需20天,乙单独完成需30天;(2)该工程施工费用是168000元.【分析】(1)设甲单独完成需天,根据“甲队单独施工30天和乙队单独施工45天的工作量相同”列方程即可求出结论;(2)设甲、乙合做完成需要天,利用“甲乙合做的工作量=1”列出方程,求出y,即可求出结论.【题目详解】解:(1)设甲单独完成需天,依题意得解得:=20经检验=20是原方程的解乙单独完成需20+10=30天答:甲单独完成需20天,乙单独完成需30天.(2)设甲、乙合做完成需要天,依题意得解得:=12总费用为:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论