版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省建湖县2024届八年级数学第一学期期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.直角三角形两条直角边的长分别为3和4,则斜边长为()A.4 B.5 C.6 D.102.下列图案是轴对称图形的是()A. B. C. D.3.如图所示,在直角三角形ACB中,已知∠ACB=90°,点E是AB的中点,且,DE交AC的延长线于点D、交BC于点F,若∠D=30°,EF=2,则DF的长是()A.5 B.4 C.3 D.24.对于实数a、b定义一种运算“※”,规定a※b=,如1※3=,则方程※(﹣2)=的解是()A. B. C. D.5.如图,在△ABC中,AB=AC,D是BC的中点,AC的垂直平分线交AC,AD,AB于点E,O,F,则图中全等三角形的对数是()A.1对 B.2对 C.3对 D.4对6.下列乘法运算中不能用平方差公式计算的是()A.(x+1)(x﹣1) B.(x+1)(﹣x+1)C.(﹣x+1)(﹣x﹣1) D.(x+1)(﹣x﹣1)7.如图,直线经过点,则不等式的解集为()A. B. C. D.8.假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们有几种租住方案A.5种 B.4种 C.3种 D.2种9.如图1,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成如图2所示的长方形.通过计算剪拼前后阴影部分的面积,验证了一个等式,这则个等式是()A.(a+b)(a﹣b)=a2﹣b2 B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2 D.a(a﹣b)=a2﹣ab10.若等腰三角形的两边长分别4和6,则它的周长是()A.14 B.15 C.16 D.14或1611.利用形如这个分配性质,求的积的第一步骤是()A. B.C. D.12.下列实数:,,π,-,,0.1010010001,无理数的个数是()A.4个 B.3个C.2个 D.1个二、填空题(每题4分,共24分)13.在底面直径为3cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为____cm.(结果保留π)14.如图,已知方格纸中是个相同的正方形,则____度.15.如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF,若∠ABE=20°,那么∠EFC′的度数为______.16.在一个不透明的盒子中装有个球,它们有且只有颜色不同,其中红球有3个.每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.06,那么可以推算出的值大约是__________.17.清代诗人袁枚的一首诗《苔》中写到:“白日不到处,青春恰自来.苔花如米小,也学牡丹开”,若苔花的花粉直径约为0.0000084米,用科学记数法表示为______米.18.如图,在平面直角坐标系xOy中,菱形OABC的边长为2,点A在第一象限,点C在x轴正半轴上,∠AOC=60°,若将菱形OABC绕点O顺时针旋转75°,得到四边形OA′B′C′,则点B的对应点B′的坐标为_____.三、解答题(共78分)19.(8分)仔细阅读下面例题,解答问题:例题:已知二次三项式有一个因式是,求另一个因式以及的值,解:设另一个因式为,得:,则解得:另一个因式为,的值为,问题:仿照以上方法解答下列问题:已知二次三项式有一个因式是,求另一个因式以及的值.20.(8分)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB,于点E(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.21.(8分)观察下列等式:①;②;③……根据上述规律解决下列问题:(1)完成第四个等式:;(2)猜想第个等式(用含的式子表示),并证明其正确性.22.(10分)如图,已知AB⊥BC,EC⊥BC,ED⊥AC且交AC于F,BC=CE,则AC与ED相等吗?说明你的理由.23.(10分)如图,矩形中,点是线段上一动点,为的中点,的延长线交BC于.(1)求证:;(2)若,,从点出发,以l的速度向运动(不与重合).设点运动时间为,请用表示的长;并求为何值时,四边形是菱形.24.(10分)甲、乙两车从A城出发沿一条笔直公路匀速行驶至B城在整个行驶过程中,甲、乙两车离开A城的距离千米与甲车行驶的时间小时之间的函数关系如图所示.,B两城相距______千米,乙车比甲车早到______小时;甲车出发多长时间与乙车相遇?若两车相距不超过20千米时可以通过无线电相互通话,则两车都在行驶过程中可以通过无线电通话的时间有多长?25.(12分)为了解某校八年级暑期参加义工活动的时间,某研究小组随机采访了该校八年级的20位同学,得到这20位同学暑假参加义工活动的天数的统计如下:天数(天)02356810人数1248221(1)这20位同学暑期参加义工活动的天数的中位数是______天,众数是_______天,极差是_______天;(2)若小明同学把天数中的数据“8”看成了“7”,那么中位数、众数、方差,极差四个指标中受影响的是___;(3)若该校有500名八年级学生,试用这20个同学的样本数据去估计该校八年级学生暑期参加义工活动的总天数.26.“垃圾分类”意识已经深入人心.我校王老师准备用元(全部用完)购买两类垃圾桶,已知类桶单价元,类桶单价元,设购入类桶个,类桶个.(1)求关于的函数表达式.(2)若购进的类桶不少于类桶的倍.①求至少购进类桶多少个?②根据临场实际购买情况,王老师在总费用不变的情况下把一部分类桶调换成另一种类桶,且调换后类桶的数量不少于类桶的数量,已知类桶单价元,则按这样的购买方式,类桶最多可买个.(直接写出答案)
参考答案一、选择题(每题4分,共48分)1、B【解题分析】利用勾股定理即可求出斜边长.【题目详解】由勾股定理得:斜边长为:=1.故选B.【题目点拨】本题考查了勾股定理;熟练掌握勾股定理,理解勾股定理的内容是解题的关键.2、C【分析】根据轴对称图形的性质,分别进行判断,即可得到答案.【题目详解】解:根据题意,A、B、D中的图形不是轴对称图形,C是轴对称图形;故选:C.【题目点拨】本题考查了轴对称图形的定义,解题的关键是熟记定义.3、B【分析】求出∠B=30°,结合EF=2,得到BF,连接AF,根据垂直平分线的性质得到FA=FB=4,再证明∠DAF=∠D,得到DF=AF=4即可.【题目详解】解:∵DE⊥AB,则在△AED中,∵∠D=30°,∴∠DAE=60°,在Rt△ABC中,∵∠ACB=90°,∠BAC=60°,∴∠B=30°,在Rt△BEF中,∵∠B=30°,EF=2,∴BF=4,连接AF,∵DE是AB的垂直平分线,∴FA=FB=4,∠FAB=∠B=30°,∵∠BAC=60°,∴∠DAF=30°,∵∠D=30°,∴∠DAF=∠D,∴DF=AF=4,故选B.【题目点拨】本题考查了垂直平分线的判定和性质,直角三角形的性质,解题的关键是掌握相应定理,构造线段AF.4、C【分析】根据定义新运算公式列出分式方程,然后解分式方程即可.【题目详解】解:∵※(﹣2)=∴解得:x=6经检验:x=6是原方程的解故选C.【题目点拨】此题考查的是定义新运算和解分式方程,掌握定义新运算公式和解分式方程的一般步骤是解决此题的关键.5、D【题目详解】试题分析:∵D为BC中点,∴CD=BD,又∵∠BDO=∠CDO=90°,∴在△ABD和△ACD中,,∴△ABD≌△ACD;∵EF垂直平分AC,∴OA=OC,AE=CE,在△AOE和△COE中,,∴△AOE≌△COE;在△BOD和△COD中,,∴△BOD≌△COD;在△AOC和△AOB中,,∴△AOC≌△AOB;所以共有4对全等三角形,故选D.考点:全等三角形的判定.6、D【分析】根据平方差公式的特点逐个判断即可.【题目详解】解:选项A:(x+1)(x-1)=x2-1,故选项A可用平方差公式计算,不符合题意,选项B:(x+1)(-x+1)=1-x2,故选项B可用平方差公式计算,不符合题意,选项C:(-x+1)(-x-1)=x2-1,故选项C可用平方差公式计算,不符合题意,选项D:(x+1)(-x-1)=-(x+1)2,故选项D不可用平方差公式计算,符合题意,故选:D.【题目点拨】此题考查平方差公式,属于基础题,关键是根据平方差公式的形式解答.7、D【解题分析】结合函数的图象利用数形结合的方法确定不等式的解集即可.【题目详解】解:观察图象知:当时,,故选:D.【题目点拨】本题考查了一次函数与一元一次不等式的知识,解题的关键是根据函数的图象解答,难度不大.8、C【解题分析】试题分析:设住3人间的需要有x间,住2人间的需要有y间,则根据题意得,3x+2y=17,∵2y是偶数,17是奇数,∴3x只能是奇数,即x必须是奇数.当x=1时,y=7,当x=3时,y=4,当x=5时,y=1,当x>5时,y<1.∴她们有3种租住方案:第一种是:1间住3人的,7间住2人的,第二种是:3间住3人的,4间住2人的,第三种是:5间住3人的,1间住2人的.故选C.9、A【分析】分别计算出两个图形中阴影部分的面积即可.【题目详解】图1阴影部分面积:a2﹣b2,图2阴影部分面积:(a+b)(a﹣b),由此验证了等式(a+b)(a﹣b)=a2﹣b2,故选:A.【题目点拨】此题主要考查了平方差公式的几何背景,运用几何直观理解、解决平方差公式的推导过程,通过几何图形之间的数量关系对平方差公式做出几何解释.10、D【解题分析】根据题意,①当腰长为6时,符合三角形三边关系,周长=6+6+4=16;②当腰长为4时,符合三角形三边关系,周长=4+4+6=14.故选D.11、A【分析】把3x+2看成一整体,再根据乘法分配律计算即可.【题目详解】解:的积的第一步骤是.故选:A.【题目点拨】本题主要考查了多项式乘多项式的运算,把3x+2看成整体是关键,注意根据题意不要把x-5看成整体.12、C【分析】根据无理数就是无限不循环小数即可判定选择项.【题目详解】解:,,π,-,,0.1010010001中,=-2,无理数有,π共2个,故选:C【题目点拨】本题考查了无理数的定义,其中初中范围内学习的无理数的形式有:π,2π等;开方开不尽的数;以及像0.1010010001…这样有规律的数.二、填空题(每题4分,共24分)13、.【题目详解】试题分析:如图所示,∵无弹性的丝带从A至C,∴展开后AB=3πcm,BC=3cm,由勾股定理得:AC==cm.故答案为.考点:1.平面展开-最短路径问题;2.最值问题.14、135【解题分析】如图,由已知条件易证△ABC≌△BED及△BDF是等腰直角三角形,∴∠1=∠EBD,∠2=45°,∵∠3+∠EBD=90°,∴∠1+∠2+∠3=135°.15、125°【题目详解】解:Rt△ABE中,∠ABE=20°,∴∠AEB=70°,由折叠的性质知:∠BEF=∠DEF,而∠BED=180°﹣∠AEB=110°,∴∠BEF=55°,易知∠EBC=∠D=∠BC′F=∠C=90°,∴BE∥C′F,∴∠EFC′=180°﹣∠BEF=125°.故答案为125°.【题目点拨】本题考查翻折变换(折叠问题).16、1【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【题目详解】由题意可得,,解得,,经检验n=1是方程的解,故估计n大约是1.
故答案为:1.【题目点拨】本题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.17、8.4×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】解:0.0000084=8.4×10-6,故答案为:8.4×10-6.【题目点拨】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.18、【解题分析】作B′H⊥x轴于H点,连结OB,OB′,根据菱形的性质得到∠AOB=30°,再根据旋转的性质得∠BOB′=75°,OB′=OB=2,则∠AOB′=∠BOB′﹣∠AOB=45°,所以△OBH为等腰直角三角形,根据等腰直角三角形性质可计算得OH=B′H=,然后根据第四象限内点的坐标特征写出B′点的坐标.【题目详解】作B′H⊥x轴于H点,连结OB,OB′,如图,∵四边形OABC为菱形,∴∠AOC=180°﹣∠C=60°,OB平分∠AOC,∴∠AOB=30°,∵菱形OABC绕原点O顺时针旋转75°至第四象限OA′B′C′的位置,∴∠BOB′=75°,OB′=OB=2,∴∠AOB′=∠BOB′﹣∠AOB=45°,∴△OB′H为等腰直角三角形,∴OH=B′H=OB′=,∴点B′的坐标为(,﹣),故答案为(,﹣).【题目点拨】本题考查了坐标与图形变化,旋转的性质,解直角三角形等,熟知旋转前后哪些线段或角相等是解题的关键.三、解答题(共78分)19、另一个因式为,的值为【分析】设另一个因式为(x+n),得2x2-5x-k=(2x-3)(x+n)=2x2+(2n-3)x-3n,可知2n-3=-5,k=3n,继而求出n和k的值及另一个因式.【题目详解】解:设另一个因式为(x+n),得:2x2-5x-k=(2x-3)(x+n)则2x2-5x-k=2x2+(2n-3)x-3n,解得:另一个因式为,的值为,【题目点拨】本题考查因式分解的应用,正确读懂例题,理解如何利用待定系数法求解是解本题的关键.20、(1)见解析(2)BD=2【解题分析】解:(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°.∵在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL).(2)∵Rt△ACD≌Rt△AED,CD=1,∴DC=DE=1.∵DE⊥AB,∴∠DEB=90°.∵∠B=30°,∴BD=2DE=2.(1)根据角平分线性质求出CD=DE,根据HL定理求出另三角形全等即可.(2)求出∠DEB=90°,DE=1,根据含30度角的直角三角形性质求出即可.21、(1);(2)第n个等式,证明见解析.【分析】(1)根据题目中的几个等式可以写出第四个等式;
(2)根据题目中等式的规律可得第n个等式.再将整式的左边展开化简,使得化简后的结果等于等式右边即可证明结论正确.【题目详解】解:(1)由题目中的几个例子可得,
第四个等式是:72-4×32=13,
故答案为72-4×32=13;
(2)第n个等式是:(2n-1)2-4×(n-1)2=,
证明:∵(2n-1)2-4×(n-1)2
=4n2-4n+1-4(n2-2n+1)
=4n2-4n+1-4n2+8n-4
=4n-3=,
∴(2n-1)2-4×(n-1)2=成立.【题目点拨】本题考查整式的混合运算、数字的变化,解题的关键是掌握整式的混合运算法则、发现题目中等式的变化规律,写出相应的等式.22、AC=ED,理由见解析【分析】证得∠ACB=∠DEC,可证明△DEC≌△ACB,则AC=ED可证出.【题目详解】解:AC=ED,理由如下:∵AB⊥BC,EC⊥BC,DE⊥AC,∴∠ACB+∠FCE=90°,∠FCE+∠DEC=90°,∴∠ACB=∠DEC,∵BC=CE,∠ABC=∠DCE=90°∴△DEC≌△ACB(ASA),∴AC=ED.【题目点拨】本题主要考查了全等三角形的判定及性质,分析并证明全等所缺条件是解题关键.23、(1)证明见解析;(2)PD=8-t,运动时间为秒时,四边形PBQD是菱形.【分析】(1)先根据四边形ABCD是矩形,得出AD∥BC,∠PDO=∠QBO,再根据O为BD的中点得出△POD≌△QOB,即可证得OP=OQ;(2)根据已知条件得出∠A的度数,再根据AD=8cm,AB=6cm,得出BD和OD的长,再根据四边形PBQD是菱形时,利用勾股定理即可求出t的值,判断出四边形PBQD是菱形.【题目详解】(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠PDO=∠QBO,又∵O为BD的中点,∴OB=OD,在△POD与△QOB中,,∴△POD≌△QOB,∴OP=OQ;(2)PD=8-t,∵四边形PBQD是菱形,∴BP=PD=8-t,∵四边形ABCD是矩形,∴∠A=90°,在Rt△ABP中,由勾股定理得:AB2+AP2=BP2,即62+t2=(8-t)2,解得:t=,即运动时间为秒时,四边形PBQD是菱形.【题目点拨】本题考查了矩形的性质,菱形的性质,全等三角形的判定与性质,勾股定理等,熟练掌握相关知识是解题关键.注意数形结合思想的运用.24、(1)300千米,1小时(2)2.5小时(3)1小时【解题分析】(1)根据函数图象可以直接得到A,B两城的距离,乙车将比甲车早到几小时;(2)由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,求得两函数图象的交点即可(3)再令两函数解析式的差小于或等于20,可求得t可得出答案.【题目详解】(1)由图象可知A、B两城市之间的距离为300km,甲比乙早到1小时,(2)设甲车离开A城的距离y与t的关系式为y甲=kt,
把(5,300)代入可求得k=60,
∴y甲=60t,
设乙车离开A城的距离y与t的关系式为y乙=mt+n,
把(1,0)和(4,300)代入可得,
解得:,
∴y乙=100t-100,
令y甲=y乙,可得:60t=100t-100,
解得:t=2.5,
即甲、乙两直线的交点横坐标为t=2.5,
∴甲车出发2.5小时与乙车相遇(3)当y甲-y乙=20时60t-100t+100=20,t=2当y乙-y甲=20
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 交易合同样式
- 施工合同中的木工劳务分包细节
- 购房合同解除的合法性探讨
- 坯布供应商购销协议
- 房屋买卖合同的房产交易利息计算
- 喷浆作业分包合同模板
- 正式软件升级服务合同
- 海运散货运输协议模板
- 医疗设备维修服务合同案例
- 结婚保证书范文精彩剖析
- 大学生国家安全教育智慧树知到期末考试答案2024年
- 2024继续教育《医学科研诚信与医学了研究伦理》答案
- 安安全全坐火车PPT课件
- 交通事故责任划分图例
- 发展汉语“初级综合1”第1-12课测试卷
- 钻井常用计算公式
- 《关键产品特性(KCDS)的识别与传递》-20131105-杨佳音付艳玲
- 混凝土浇筑监理旁站记录(完整)
- 十大奢侈品牌
- 起重机械维修保养标准
- 中学以案促改廉政风险台账.doc
评论
0/150
提交评论