2024届四川省简阳市镇金区八上数学期末联考模拟试题含解析_第1页
2024届四川省简阳市镇金区八上数学期末联考模拟试题含解析_第2页
2024届四川省简阳市镇金区八上数学期末联考模拟试题含解析_第3页
2024届四川省简阳市镇金区八上数学期末联考模拟试题含解析_第4页
2024届四川省简阳市镇金区八上数学期末联考模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届四川省简阳市镇金区八上数学期末联考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列计算正确的是()A.a3•a2=a6 B.(﹣2a2)3=﹣8a6 C.(a+b)2=a2+b2 D.2a+3a=5a22.已知的三边长分别为,且那么()A. B. C. D.3.下列各数中,不是无理数的是()A. B. C. D.4.在矩形ABCD内,将两张边长分别为a和的正方形纸片按图1,图2两种方式放置图1,图2中两张正方形纸片均有部分重叠,矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为,图2中阴影部分的面积为当时,的值为A.2a B.2b C. D.5.如图,∠AOB=60°,OC平分∠AOB,P为射线OC上一点,如果射线OA上的点D,满足△OPD是等腰三角形,那么∠ODP的度数为()A.30° B.120°C.30°或120° D.30°或75°或120°6.方程的公共解是()A. B. C. D.7.a,b是两个连续整数,若a<<b,则a+b的值是()A.7 B.9 C.21 D.258.石墨烯是世界上最薄也是最坚硬的纳米材料,它的理论厚度仅0.00000000034m,将这个数用科学计数法表示为()A. B. C. D.9.下列图形①线段、②角、③等腰三角形、④直角三角形,是轴对称图形的是()A.①② B.③④ C.①②③ D.②③④10.下列各式可以用完全平方公式分解因式的是()A. B. C. D.11.点P(4,5)关于y轴对称的点的坐标是()A.(-4,5)B.(-4,-5)C.(4,-5)D.(4,5)12.如图,在△ABC中,∠C=90°,∠BAC=30°,AB=12,AD平分∠BAC,点PQ分别是AB、AD边上的动点,则BQ+QP的最小值是()A.4 B.5 C.6 D.7二、填空题(每题4分,共24分)13.观察下列关于自然数的式子:,,,,,…,根据上述规律,则第个式子化简后的结果是_____.14.等腰三角形的一个角是50°,则它的底角为__________°.15.如图,已知△ABC的周长是20,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于点D,且OD=2,△ABC的面积是_____.16.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1=_____.17.如图,,,,在上分别找一点,当的周长最小时,的度数是_______.18.在中,,,则面积为_______.三、解答题(共78分)19.(8分)基本运算(1)分解因式:①②(2)整式化简求值:求[]÷的值,其中无意义,且.20.(8分)正方形网格中每个小正方形的边长都是1,每个小正方形的顶点叫做格点,以格点为顶点.(1)在图①中,画一个面积为10的正方形;(2)在图②、③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.21.(8分)如图1,将一个长为4a,宽为2b的长方形,沿图中虚线均匀分成4个小长方形,然后按图2形状拼成一个正方形.(1)图2的空白部分的边长是多少?(用含ab的式子表示)(2)若,求图2中的空白正方形的面积.(3)观察图2,用等式表示出,ab和的数量关系.22.(10分)小山同学结合学习一次函数的经验和自己的思考,按以下方式探究函数的图象与性质,并尝试解决相关问题.请将以下过程补充完整:(1)判断这个函数的自变量x的取值范围是________________;(2)补全表格:(3)在平面直角坐标系中画出函数的图象:(4)填空:当时,相应的函数解析式为___(用不含绝对值符合的式子表示);(5)写出直线与函数的图象的交点坐标.23.(10分)如图,AB⊥BC,AD⊥DC,∠BAD=100°,在BC、CD上分别找一点M、N,当△AMN周长最小时,求∠MAN的度数是多少?24.(10分)如图,将置于直角坐标系中,若点A的坐标为(1)写出点B和点C的坐标(2)作关于x轴对称的图形,并说明对应点的横、纵坐标分别有什么关系?25.(12分)阅读材料:我们学过一次函数的图象的平移,如:将一次函数的图象沿轴向右平移个单位长度可得到函数的图象,再沿轴向上平移个单位长度,得到函数的图象;如果将一次函数的图象沿轴向左平移个单位长度可得到函数的图象,再沿轴向下平移个单位长度,得到函数的图象.类似地,形如的函数图象的平移也满足此规律.仿照上述平移的规律,解决下列问题:(1)将一次函数的图象沿轴向右平移个单位长度,再沿轴向上平移个单位长度,得到函数________的图象(不用化简);(2)将的函数图象沿y轴向下平移个单位长度,得到函数________________的图象,再沿轴向左平移个单位长度,得到函数_________________的图象(不用化简);(3)函数的图象可看作由的图象经过怎样的平移变换得到?26.如图,在ΔABC中,AB=AC,E是AB上一点,F是AC延长线上一点,连EF交BC于D.如果EB=CF,求证:DE=DF.

参考答案一、选择题(每题4分,共48分)1、B【解题分析】A选项错误,a3·a2=a5;B选项正确;C选项错误,(a+b)2=a2+2ab+b2;D选项错误,2a+3a=5a.故选B.点睛:熟记公式:(1)(an)m=amn,(2)am·an=am+n,(3)(a±b)2=a2±2ab+b2.2、D【分析】根据三角形的三边关系即可求解.【题目详解】∵的三边长分别为∴>0,>0,<0∴<0故选D.【题目点拨】此题主要考查三角形的三边关系的应用,解题的关键是熟知两边之和大于第三边.3、A【分析】根据无理数是无限不循环小数解答即可.【题目详解】是分数,是有理数.故选:A【题目点拨】本题考查的是无理数的识别,掌握无理数的定义是关键.4、B【解题分析】利用面积的和差分别表示出和,然后利用整式的混合运算计算它们的差.【题目详解】,,,,,,,故选B.【题目点拨】本题考查了正方形的性质,整式的混合运算,“整体”思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.5、D【分析】求出∠AOC,根据等腰得出三种情况,OD=PD,OP=OD,OP=CD,根据等腰三角形性质和三角形内角和定理求出即可.【题目详解】解:∵∠AOB=60°,OC平分∠AOB,∴∠AOC=30°,①当D在D1时,OD=PD,∵∠AOP=∠OPD=30°,∴∠ODP=180°﹣30°﹣30°=120°;②当D在D2点时,OP=OD,则∠OPD=∠ODP=(180°﹣30°)=75°;③当D在D3时,OP=DP,则∠ODP=∠AOP=30°;综上所述:120°或75°或30°,故选:D.【题目点拨】本题考查了等腰三角形,已知等腰三角形求其中一角的度数,灵活的根据等腰三角形的性质分类讨论确定点D的位置是求角度数的关键.6、C【分析】此题要求公共解,实质上是解二元一次方程组.【题目详解】把方程y=1﹣x代入1x+2y=5,得1x+2(1﹣x)=5,解得:x=1.把x=1代入方程y=1﹣x,得y=﹣2.故选C.【题目点拨】这类题目的解题关键是掌握方程组解法,此题运用了代入消元法.7、A【分析】先求出的范围,即可得出a、b的值,代入求出即可.【题目详解】解:∵3<<4,∴a=3,b=4,∴a+b=7,故选:A.【题目点拨】本题考查了估算无理数的大小的应用,解此题的关键是估算出的范围,难度不是很大.8、C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×1-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】解:0.000000000034=3.4×1-1.故选C.【题目点拨】本题考查用科学记数法表示较小的数,一般形式为a×1-n,解决本题的关键是要熟练掌握科学记数法的表示形式.9、C【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴可得到轴对称图形,再根据对称轴的条数进行进一步筛选可得答案.【题目详解】解:根据轴对称图形的性质得出:线段,角,等腰三角形都是轴对称图形,故一共有3个轴对称图形.故选:C.【题目点拨】本题主要考查了轴对称图形,关键是找到图形的对称轴.10、D【分析】可以用完全平方公式分解因式的多项式必须是完全平方式,符合结构,对各选项分析判断后利用排除法求解.【题目详解】解:A、两平方项符号相反,不能用完全平方公式,故本选项错误;B、缺少乘积项,不能用完全平方公式,故本选项错误;C、乘积项不是这两数积的两倍,不能用完全平方公式,故本选项错误;D、,故本选项正确;故选:D.【题目点拨】本题考查了用完全公式进行因式分解的能力,解题的关键了解完全平方式的结构特点,准确记忆公式,会根据公式的结构判定多项式是否是完全平方式.11、A【解题分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答即可.【题目详解】点P(4,5)关于y轴对称的点P1的坐标为(﹣4,5).故选A.【题目点拨】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.12、C【分析】如图,作点P关于直线AD的对称点P′,连接QP′,由△AQP≌△AQP′,得PQ=QP′,欲求PQ+BQ的最小值,只要求出BQ+QP′的最小值,即当BP′⊥AC时,BQ+QP′的值最小,此时Q与D重合,P′与C重合,最小值为BC的长.【题目详解】解:如图,作点P关于直线AD的对称点P′,连接QP′,△AQP和△AQP′中,,∴△AQP≌△AQP′,∴PQ=QP′∴欲求PQ+BQ的最小值,只要求出BQ+QP′的最小值,∴当BP′⊥AC时,BQ+QP′的值最小,此时Q与D重合,P′与C重合,最小值为BC的长.在Rt△ABC中,∵∠C=90°,AB=12,∠BAC=30°,∴BC=AB=6,∴PQ+BQ的最小值是6,故选:C.【题目点拨】本题考查了勾股定理、轴对称中的最短路线问题、垂线段最短等知识,找出点P、Q的位置是解题的关键.二、填空题(每题4分,共24分)13、【分析】由前几个代数式可得,减数是从2开始连续偶数的平方,被减数是从2开始连续自然数的平方的4倍,由此规律得出答案即可.【题目详解】∵①②③④⑤∴第个代数式为:.故答案为:.【题目点拨】本题考查了数字的变化规律,找出数字之间的运算规律,利用规律解决问题是解题的关键.14、50或1.【解题分析】已知一个内角是50°,则这个角可能是底角也可能是顶角,因此要分两种情况进行求解.【题目详解】当50°的角是底角时,三角形的底角就是50°;当50°的角是顶角时,两底角相等,根据三角形的内角和定理易得底角是1°.故答案是:50或1.【题目点拨】本题考查了等腰三角形的性质,解题时要全面思考,不要漏解.15、1.【分析】根据角平分线上的点到角的两边的距离相等可得点O到AB、AC、BC的距离都相等(即OE=OD=OF),从而可得到的面积等于周长的一半乘以2,代入求出即可.【题目详解】如下图,连接OA,过O作OE⊥AB于E,OF⊥AC于F,∵OB、OC分别平分∠ABC和∠ACB,∴OE=OF=OD=2,∵的周长是1,OD⊥BC于D,且OD=2,∴=1,故答案为:1【题目点拨】本题主要考查了角平分线的性质及三角形面积的求法,熟练掌握角平分线的性质是解决本题的关键.16、【题目详解】试题分析:如图,过E作EF∥AB,根据平行于同一直线的两直线互相平行,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC=44°,∠BAE=∠FEA,求出∠BAE=90°-44°=46°,即可求出∠1=180°-46°=134°.17、140°【分析】作点A关于CD、BC的对称点E、F,连接EF交CD、BC于点N、M,连接AN、MN、AM,此时的周长最小,先利用求出∠E+∠F=70,根据轴对称关系及三角形外角的性质即可求出∠AMN+∠ANM=2(∠E+∠F).【题目详解】如图,作点A关于CD、BC的对称点E、F,连接EF交CD、BC于点N、M,连接AN、MN、AM,此时的周长最小,∵,,∴∠ABC=∠ADC=90,∵,∴∠BAD=110,∴∠E+∠F=70,∵∠AMN=∠F+∠FAM,∠F=∠FAM,∠ANM=∠E+∠EAN,∠E=∠EAN,∴∠AMN+∠ANM=2(∠E+∠F)=140,故答案为:140.【题目点拨】此题考查最短路径问题,轴对称的性质,三角形外角性质,四边形的内角和,正确理解将三角形的最短周长转化为最短路径问题来解决是解题的关键.18、60【分析】根据题意可以判断为等腰三角形,利用勾股定理求出AB边的高,即可得到答案.【题目详解】如图作出AB边上的高CD∵AC=BC=13,AB=10,∴△ABC是等腰三角形,∴AD=BD=5,根据勾股定理CD2=AC2-AD2,CD==12,==60,故答案为:60.【题目点拨】此题主要考查了等腰三角形的判定及勾股定理,关键是判断三角形的形状,利用勾股定理求出三角形的高.三、解答题(共78分)19、(1)①,②;(2),-1【分析】(1)①先提取,再利用平方差公式即可求解;②先化简,再利用完全平方公式即可求解;(2)先根据整式的混合运算法则化简,再根据零指数幂的性质求出x,y的值,代入即可求解.【题目详解】(1)①==②(2)[]÷===∵无意义,且,∴,代入上式得:原式==-1.【题目点拨】此题主要考查因式分解与整式的运算,解题的关键是熟知其运算法则.20、作图见解析.【解题分析】试题分析:(1)根据正方形的面积为10可得正方形边长为,画一个边长为正方形即可;(2)①画一个边长为,,的直角三角形即可;②画一个边长为,,的直角三角形即可;试题解析:(1)如图①所示:(2)如图②③所示.考点:1.勾股定理;2.作图题.21、(1)2a-b;(2)25;(3)8ab.【分析】(1)根据长方形的长是2a,宽是b,可以得到小正方形的边长是长与宽的的差;(2)从图中可以看出小正方形的面积=大正方形的面积-4个小长方形的面积,再根据2a+b=7求出小正方形的面积;(3)利用平方差公式得到:,ab和之间的关系.【题目详解】解:(1)图2的空白部分的边长是:2a-b;(2)由图可知,小正方形的面积=大正方形的面积-4个小长方形的面积,∵大正方形的边长=2a+b=7,∴大正方形的面积=,又∵4个小长方形的面积之和=大长方形的面积=4a×2b=8ab=8×3=24,∴小正方形的面积=;(3)由图2可以看出,大正方形的面积=空白部分的正方形的面积+四个小长方形的面积即:.考点:1.完全平方公式;2.平方差公式.22、(1)全体实数;(2)见解析;(3)见解析;(4);(5)【分析】(1)由函数解析式:可以得到自变量的取值范围,(2)利用函数解析式给出的自变量的值得出函数值可以得到答案.(3)根据自变量与函数值的对应值在平面直角坐标系中描好点并连线得到图像.(4)在的条件下去掉绝对值符号,得到函数解析式.(5)观察图像写出交点坐标即可.【题目详解】(1)因为:,所以函数自变量的取值范围是全体实数.(2)利用把分别代入解析式计算出函数的值填入下表:(3)描点并连线(见图5).(4)因为:,所以所以:(5)在同一直角坐标系中画出的图像,观察图像得交点为(如图6所示).【题目点拨】本题考查了一次函数图象上点的坐标特征,能熟记一次函数的图象和性质是解此题的关键.23、20°.【分析】根据要使△AMN的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′M+∠A″=180°﹣∠BAD=80°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″),再求∠MAN的度数即可得出答案.【题目详解】如图,作A关于BC和CD的对称点A',A″,连接A'A″,交BC于M,交CD于N,则A'A″即为△AMN的周长最小值.∵∠DAB=100°,∴∠AA'M+∠A″=180°﹣∠BAD=180°﹣100°=80°.∵∠MA'A=∠MAA',∠NAD=∠A″,且∠MA'A+∠MAA'=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA'A+∠MAA'+∠NAD+∠A″=2(∠AA'M+∠A″)=2×80°=160°,∴∠MAN=180°﹣160°=20°.故当△AMN周长最小时,∠MAN的度数是20°.【题目点拨】本题考查的是轴对称-最短路线问题,涉及到平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出M,N的位置是解题关键.24、(1)(-3,1)(-1,2);(2)作图见详解,对应点的横、纵坐标的关系是:横坐标相等,纵坐标互为相反数.【分析】(1)根据点B,点C在坐标系中的位置,即可得到答案;(2)作出点A,B,C关于x轴的对称点,用线段连接起来即可;观察对应点的横,纵坐标的特点,即可得到答案.【题目详解】(1)由图可得:点B和点C的坐标分别是:(-3,1)(-1,2).(2)如图所示:对应点的横、纵坐标的关系是:横坐标相等,纵坐标互为相反数.【题目点拨】本题主要考查作轴对称图形以及轴对称的性质,理解轴对称的性质是解题的关键.25、(1);(2);;(3)先向左平移2个单位长度,再向

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论