2024届云南省昭通市昭阳区苏家院乡中学数学八上期末质量检测试题含解析_第1页
2024届云南省昭通市昭阳区苏家院乡中学数学八上期末质量检测试题含解析_第2页
2024届云南省昭通市昭阳区苏家院乡中学数学八上期末质量检测试题含解析_第3页
2024届云南省昭通市昭阳区苏家院乡中学数学八上期末质量检测试题含解析_第4页
2024届云南省昭通市昭阳区苏家院乡中学数学八上期末质量检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届云南省昭通市昭阳区苏家院乡中学数学八上期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,.点,,,,在射线上,点,,,,在射线上,,,,均为等边三角形,若,则的边长为()A. B. C. D.2.如图所示的正方形网格中,网格线的交点称为格点.已知、是两格点,如果也是图中的格点,且使得为等腰三角形,则点的个数是()A.5 B.6 C.7 D.83.已知一次函数的图象经过第一、二、三象限,则的值可以是()A.-2 B.-1 C.0 D.24.下列给出的四组线段中,可以构成直角三角形的是()A.4,5,6 B. C.2,3,4 D.12,9,155.如图,在四边形中,添加下列一个条件后,仍然不能证明,那么这个条件是()A. B.平分 C. D.6.如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE7.已知的三边长为满足条件,则的形状为()A.等腰三角形 B.等腰直角三角形C.等边三角形 D.等腰三角形或直角三角形8.关于的分式方程的解是正数,则的取值范围是()A.且 B. C.且 D.9.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)10.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2019次运动后,动点P的坐标是()A.(2018,2) B.(2019,0)C.(2019,1) D.(2019,2)二、填空题(每小题3分,共24分)11.式子在实数范围内有意义的条件是__________.12.已知:实数m,n满足:m+n=4,mn=-2,则(1+m)(1+n)的值等于_____13.的平方根是_________.14.若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是边形.15.计算的结果等于_______.16.如图,在平面直角坐标系中,已知点A(1,0)、B(0,2),如果将线段AB绕点B顺时针旋转90°至CB,那么点C的坐标是.17.如图,ΔABC的面积为8cm2,AP垂直∠B的平分线BP于P,则ΔPBC的面积为________.18.如图,中,,将沿翻折后,点落在边上的点处.如果,那么的度数为_________.三、解答题(共66分)19.(10分)多好佳水果店在批发市场购买某种水果销售,第一次用1500元购进若干千克,并以每千克9元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了10%,用1694元所购买的水果比第一次多20千克,以每千克10元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价45%售完剩余的水果.(1)第一次水果的进价是每千克多少元?(2)该水果店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元?20.(6分)如图:已知OA和OB两条公路,以及C、D两个村庄,建立一个车站P,使车站到两个村庄距离相等即PC=PD,且P到OA,OB两条公路的距离相等.21.(6分)如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.22.(8分)为迎接“均衡教育大检查”,县委县府对通往某偏远学校的一段全长为1200米的道路进行了改造,铺设草油路面.铺设400米后,为了尽快完成道路改造,后来每天的工作效率比原计划提高25%,结果共用13天完成道路改造任务.(1)求原计划每天铺设路面多少米;(2)若承包商原来每天支付工人工资为1500元,提高工作效率后每天支付给工人的工资增长了20%,完成整个工程后承包商共支付工人工资多少元?23.(8分)计算(1)[2a(a2b-ab2)+ab(ab-a2)]a2b(2)24.(8分)如图1,△ABC中,AB=AC,∠BAC=90°,CD平分∠ACB,BE⊥CD,垂足E在CD的延长线上.请解答下列问题:(1)图中与∠DBE相等的角有:;(2)直接写出BE和CD的数量关系;(3)若△ABC的形状、大小不变,直角三角形BEC变为图2中直角三角形BED,∠E=90°,且∠EDB=∠C,DE与AB相交于点F.试探究线段BE与FD的数量关系,并证明你的结论.25.(10分)如图,为边长不变的等腰直角三角形,,,在外取一点,以为直角顶点作等腰直角,其中在内部,,,当E、P、D三点共线时,.下列结论:①E、P、D共线时,点到直线的距离为;②E、P、D共线时,;;④作点关于的对称点,在绕点旋转的过程中,的最小值为;⑤绕点旋转,当点落在上,当点落在上时,取上一点,使得,连接,则.其中正确结论的序号是___.26.(10分)如图,小区有一块四边形空地,其中.为响应沙区创文,美化小区的号召,小区计划将这块四边形空地进行规划整理.过点作了垂直于的小路.经测量,,,.(1)求这块空地的面积;(2)求小路的长.(答案可含根号)

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据等边三角形的性质和,可求得,进而证得是等腰三角形,可求得的长,同理可得是等腰三角形,可得,同理得规律,即可求得结果.【题目详解】解:∵,是等边三角形,∴,∴,∴,则是等腰三角形,∴,∵,∴=1,,同理可得是等腰三角形,可得=2,同理得、,根据以上规律可得:,即的边长为,故选:B.【题目点拨】本题属于探索规律题,主要考查了等边三角形的性质、等腰三角形的判定与性质,掌握等边三角形的三个内角都是60°、等角对等边和探索规律并归纳公式是解题的关键.2、D【分析】分AB是腰长时,根据网格结构,找出一个小正方形与A、B顶点相对的顶点,连接即可得到等腰三角形,AB是底边时,根据线段垂直平分线上的点到线段两端点的距离相等,AB垂直平分线上的格点都可以作为点C,然后相加即可得解.【题目详解】解:如图,分情况讨论:

①AB为等腰△ABC的底边时,符合条件的C点有4个;

②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.

故选:D.【题目点拨】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形.分类讨论思想是数学解题中很重要的解题思想.3、D【分析】根据一次函数图象与系数的关系得到b>1,然后对选项进行判断.【题目详解】解:∵一次函数的图象经过一、二、三象限,

∴b>1.

故选:D.【题目点拨】本题考查了一次函数图象与系数的关系:一次函数(k、b为常数,k≠1)是一条直线,当k>1,图象经过第一、三象限,y随x的增大而增大;当k<1,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(1,b).4、D【分析】根据勾股定理判断这四组线段是否可以构成直角三角形.【题目详解】A.,错误;B.当n为特定值时才成立,错误;C.,错误;D.,正确;故答案为:D.【题目点拨】本题考查了直角三角形的性质以及判定,利用勾股定理判断是否可以构成直角三角形是解题的关键.5、D【分析】根据全等三角形的判定定理:SSS、SAS、AAS、ASA、Hl逐一判定即可.【题目详解】A选项,,,AC=AC,根据SSS可判定;B选项,平分,即∠DAC=∠BAC,根据SAS可判定;C选项,,根据Hl可判定;D选项,,不能判定;故选:D.【题目点拨】此题主要考查全等三角形的判定,熟练掌握,即可解题.6、B【分析】利用全等三角形的判定与性质进而得出当∠D=∠B时,△ADF≌△CBE.【题目详解】当∠D=∠B时,在△ADF和△CBE中∵,∴△ADF≌△CBE(SAS)考点:全等三角形的判定与性质.7、D【分析】把所给的等式能进行因式分解的要因式分解,整理为非负数相加得0的形式,求出三角形三边的关系,进而判断三角形的形状.【题目详解】由,得因为已知的三边长为所以所以=0,或,即,或所以的形状为等腰三角形或直角三角形故选:D【题目点拨】本题考查了分组分解法分解因式,利用因式分解最后整理成多项式的乘积等于0的形式是解题的关键.8、A【分析】根据分式方程的解为正数,并且分母不为零,可得到满足条件的m的范围.【题目详解】解:去分母得,m−3=x−1,解得x=m−2;∵关于x的分式方程的解为正数,∴m−2>0,∴m>2,∵x−1≠0,∴x≠1,即m≠3,∴的取值范围是m>2且m≠3,故选:A.【题目点拨】本题考查了分式方程的解:使分式方程左右两边成立的未知数的值叫分式方程的解,解答本题时,易漏掉m≠3,这是因为忽略了x−1≠0这个隐含的条件而造成的,这应引起同学们的足够重视.9、D【解题分析】因为∠DAM和∠CBM是直线AD和BC被直线AB的同位角,因为∠DAM=∠CBM根据同位角相等,两直线平行可得AD∥BC,所以D选项错误,故选D.10、D【分析】分析点P的运动规律,找到循环次数即可.【题目详解】解:分析图象可以发现,点P的运动每4次纵坐标循环一次,横坐标等于运动的次数,∴2019=4×504+3,当第504循环结束时,点P位置在(2016,0),在此基础之上运动三次到(2019,2),故选:D.【题目点拨】本题是规律探究题,解题关键是找到动点运动过程中,每运动多少次形成一个循环.二、填空题(每小题3分,共24分)11、【分析】直接利用二次根式和分式有意义的条件分析得出答案.【题目详解】解:式子在实数范围内有意义的条件是:x-1>0,解得:x>1.故答案为:.【题目点拨】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.12、1【分析】先计算(1+m)(1+n),再把m+n=4,mn=-2代入即可求值.【题目详解】解:(1+m)(1+n)=1+m+n+mn当m+n=4,mn=-2时,原式=1+4+(-2)=1.故答案为:1【题目点拨】本题考查了多项式乘以多项式法则,利用多项式乘以多项式法则计算出(1+m)(1+n)是解题关键.13、【分析】先根据算术平方根的定义得到,然后根据平方根的定义求出8的平方根.【题目详解】解:,的平方根为,故答案为.【题目点拨】本题考查了平方根的定义:若一个数的平方等于,那么这个数叫的平方根,记作.14、1.【解题分析】试题分析:根据多边形的对角线的定义可知,从n边形的一个顶点出发,可以引(n-3)条对角线,由此可得到答案.试题解析:设这个多边形是n边形.依题意,得n-3=10,∴n=1.故这个多边形是1边形考点:多边形的对角线.15、2【分析】先套用平方差公式,再根据二次根式的性质计算可得.【题目详解】原式=()2﹣()2=5﹣3=2,考点:二次根式的混合运算16、.【题目详解】如图,过点C作CD⊥y轴于点D,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO,在△ABO与△BCD中,∠CBD=∠BAO,∠BDC=∠AOB,BC=AB,∴△ABO≌△BCD(AAS),∴CD=OB,BD=AO,∵点A(1,0),B(0,2),∴CD=2,BD=1,∴OD=OB-BD=1,又∵点C在第二象限,∴点C的坐标是(-2,1).17、【分析】延长AP交BC于E,根据AP垂直∠B的平分线BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以证明两三角形面积相等,即可证明三角形PBC的面积.【题目详解】解:延长AP交BC于E,如图所示:∵AP垂直∠B的平分线BP于P,∴∠ABP=∠EBP,∠APB=∠BPE=90°,在△APB和△EPB中,∴△APB≌△EPB(ASA),∴S△APB=S△EPB,AP=PE,∴△APC和△CPE等底同高,∴S△APC=S△PCE,∴S△PBC=S△PBE+S△PCE=S△ABC=4cm1,故答案为4cm1.【题目点拨】本题考查了三角形面积和全等三角形的性质和判定的应用,关键是求出S△PBC=S△PBE+S△PCE=S△ABC.18、70°【分析】首先由折叠的性质,得出∠A=∠DA′E,∠ADE=∠A′DE,∠AED=∠A′ED,然后根据,得出∠AED=∠A′ED=55°,再由三角形内角和定理即可得解.【题目详解】由已知,得∠A=∠DA′E,∠ADE=∠A′DE,∠AED=∠A′ED∵∴∠AED=∠A′ED=(180°-∠A′EC)=(180°-70°)=55°又∵∴∠ADE=∠A′DE=180°-∠A-∠AED=180°-55°-55°=70°故答案为70°.【题目点拨】此题主要考查利用三角形翻折的性质求角的度数,熟练掌握,即可解题.三、解答题(共66分)19、(1)2元;(2)盈利了8241元.【解题分析】(1)设第一次水果的进价是每千克x元,则第二次水果的进价是每千克1.1x元,根据数量=总价÷单价结合第二次比第一次多购进20千克,即可得出关于x的分式方程,解之经检验后即可得出结论;

(2)利用数量=总价÷单价可求出第一次购进水果数量,由总利润=每千克利润×销售数量可求出第一次购进水果的销售利润,同理可求出第二次购进水果的销售利润,将二者相加即可得出结论.【题目详解】解:(1)设第一次水果的进价是每千克x元,则第二次水果的进价是每千克1.1x元,根据题意,得:=20,解得:x=2,经检验,x=2是原方程的解,且符合题意.答:第一次水果的进价是每千克2元.(2)第一次购买水果1500÷2=750(千克),第一次利润为750×(9﹣2)=5250(元).第二次购买水果750+20=770(千克),第二次利润为100×(10﹣2.2)+(770﹣100)×(10×0.55﹣2.2)=2991(元).5250+2991=8241(元).答:该水果店在这两次销售中,总体上是盈利了,盈利了8241元.【题目点拨】考查了分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量关系,列式计算.20、见解析.【分析】到OA、OB距离相等的点在∠AOB的平分线上,到C,D距离相等的点在线段CD的垂直平分线上,所以P点是∠AOB的平分线与线段CD的垂直平分线的交点.【题目详解】解:如图所示,∠AOB的平分线与线段CD的垂直平分线的交点P就是所求的点:【题目点拨】本题考查了作图−应用与设计作图,角平分线的判定以及线段垂直平分线的判定,到两条相交直线距离相等的点在这两条相交直线夹角的平分线上;到两点距离相等的点,在这两点连线的垂直平分线上.21、(1)75°(2)证明见解析【解题分析】试题分析:(1)由AB=AC可得∠C=∠B=30°,可求得∠BAC,再利用角的和差可求得∠DAC;(2)由外角的性质得到∠ADC=75°,即可得到∠ADC=∠DAC,从而有AC=DC,即可得到结论.试题解析:(1)∵AB=AC,∠B=30°,∴∠C=30°,∴∠BAC=180°﹣30°﹣30°=120°,∵∠DAB=45°,∴∠DAC=∠BAC﹣∠DAB=120°﹣45°=75°;(2)∵∠ADC=∠B+∠DAB=30°+45°=75°,∴∠ADC=∠DAC,∴AC=DC,∵AB=AC,∴AB=CD.考点:1.等腰三角形的性质;2.三角形的外角性质.22、(1)80;(2)1.【解题分析】(1)设原计划每天铺设路面米,则提高工作效率后每天完成(1+25%)x米,根据等量关系“利用原计划的速度铺设400米所用的时间+提高工作效率后铺设剩余的道路所用的时间=13”,列出方程,解方程即可;(2)先求得利用原计划的速度铺设400米所用的时间和提高工作效率后铺设剩余的道路所用的时间,根据题意再计算总工资即可.【题目详解】(1)设原计划每天铺设路面米,根据题意可得:解得:检验:是原方程的解且符合题意,∴答:原计划每天铺设路面80米.原来工作400÷80=5(天).(2)后来工作(天).共支付工人工资:1500×5+1500×(1+20%)×8=1(元)答:共支付工人工资1元.【题目点拨】本题考查了分式方程的应用,根据题意正确找出等量关系,由等量关系列出方程是解决本题的关键.23、(1);(2).【分析】(1)先计算括号内的运算,然后再计算整式除法运算,即可得到答案;(2)先通分计算括号内的运算,然后计算分式除法,即可得到答案.【题目详解】解:(1)原式===;(2)原式===;【题目点拨】本题考查了分式的混合运算,分式的化简求值,整式的运算混算,整式的化简,解题的关键是熟练掌握运算法则进行解题.24、(1)∠ACE和∠BCD;(2)BE=CD;(3)BE=DF,证明见解析【分析】(1)根据三角形内角和定理得到∠DBE=∠ACE,根据角平分线的定义得到∠BCD=∠ACE,得到答案;(2)延长BE交CA延长线于F,证明△CEF≌△CEB,得到FE=BE,证明△ACD≌△ABF,得到CD=BF,证明结论;(3)过点D作DG∥CA,交BE的延长线于点G,与AE相交于H,分别证明△BGH≌△DFH、△BDE≌△GDE,根据全等三角形的性质解答即可.【题目详解】解:(1)∵BE⊥CD,∴∠E=90°,∴∠E=∠BAC,又∠EDB=∠ADC,∴∠DBE=∠ACE,∵CD平分∠ACB,∴∠BCD=∠ACE,∴∠DBE=∠BCD,故答案为:∠ACE和∠BCD;(2)延长BE交CA延长线于F,∵CD平分∠ACB,∴∠FCE=∠BCE,在△CEF和△CEB中,,∴△CEF≌△CEB(ASA),∴FE=BE,在△ACD和△ABF中,,∴△ACD≌△ABF(ASA),∴CD=BF,∴BE=CD;(3)BE=DF证明:过点D作DG∥CA,交BE的延长线于点G,与AE相交于H,∵DG∥AC,∴∠GDB=∠C,∠BHD=∠A=90°,∵∠EDB=∠C,∴∠EDB=∠EDG=∠C,∵BE⊥ED,∴∠BED=90°,∴∠BED=∠BHD,∵∠EFB=∠HFD,∴∠EBF=∠HDF,∵AB=AC,∠BAC=90°,∴∠C=∠ABC=45°,∵GD∥AC,∴∠GDB=∠C=45°,∴∠GDB=∠ABC=45°,∴BH=DH,在△BGH和△DFH中,,∴△BGH≌△DFH(ASA)∴BG=DF,∵在△BDE和△GDE中,,∴△BDE≌△GDE(ASA)∴BE=EG,∴BE=.【题目点拨】本题考查了三角形内角和定理,角平分线的意义,三角形全等的判定和性质等相关知识,解决本题的关键是:①熟练掌握三角形内角和定理

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论