




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.1.2多边形的外角和
与多边形的每个内角相邻的外角分别有两个,这两个外角是对顶角.从与每个内角相邻的两个外角中分别取一个相加,得到的和称为多边形的外角和
前面我们学习了三角形的外角和是360°
,当时是怎样研究出来的?ABCDEF1.先把三角形的三个外角和三个内角这六个角的和求出来,刚好是三个平角。2.再用这六个角的和减去三个内角的和,剩下的就是三角形的外角和了!那么你能研究出四边形的外角和吗?整体思路:1.先求4个外角+4个内角的和;2.再减去4个内角的和容易看出,4个外角+4个内角=4个平角而4个内角的和是360°
,那么四边形的外角和就是4X180°-360°=360°那么出五边形,六边形,n边形的外角和吗?五边形的外角和就是5X180°-540°=360°六边形的外角和就是6X180°-720°=360°。。。。。。n边形的外角和就是nX180°-(n-2)X180°=(n-n+2)X180°
=360°任意多边形的外角和都为360°
探索:分别求出下列多边形的外角和的度数.360°
360°
360°
360°
360°
猜想与说理:n边形的外角和是多少度呢?
答:都是360°.因为多边形的外角与它相邻的内角是邻补角,所以n边形的外角和加内角和等于n·180°,内角和为(n-2)·180°,因此,外角和为:n·180°-(n-2)·180°=360°.结论:多边形的外角和都等于360°.例3:一个多边形的内角和等于它的外角和的3倍,它是几边形?解:设它是n边形,则(n-2).180=3×360解得:n=8答:它是8边形1、一个十边形的每一个内角都相等,那么这个十边形的每一外角等于()A、144°B、72°C、36°D、18°2、一个多边形每一个外角都等于45°,则这个多边形的内角和等于()A、720°B、675°C、1080°D、945°CC巩固练习二:
课堂练习:1.一个多边形的外角都等于60°,这个多边形是n边形?
解:因为多边形的外角和等于360°,所以根据题意,可知道这个多边形的边数是:360÷60=6.答:这个多边形是六边形.2.下图是三个完全相同的正多边形拼成的无缝隙不重叠的图形的一部分,这种多边形是几边形?为什么?
解:设:这个正多边形的一个内角为x°,则由题图得:3x=360°.x=120°.再根据多边形的内角和公式得:n×120°=(n-2)×180°.解得n=6.答:(略)例13.一个正多边形的一个内角和是外角和的2倍,则这个多边形为()
A.三角形B.四边形C.五边形D.六边形例14.一个正多边形的一个内角和与外角和的比是7:2,则这个多边形的边数为()
6、两个多边形的边数比是1:2,两个多边形的内角和为1440度,求这两个多边形的边数,5、一个多边形的每个内角都比相邻的外角3倍多20度,求这个多边形的边数,4、四边形的四个内角的比是8:6:3:7,求它的四个内角,3、一个多边形的内角和是外角和的4倍,这是几边形例5.如果一个正多边形的一个内角等于150°,则这个多边形的边数是_____A.12B.9C.8D.7A例7.如果一个多边形的边数增加1,则这个多边形的内角和_____增加180°例6.如果一个多边形的每一个外角等于30°,则这个多边形的边数是_____小结:
我们通过把多边形划分为若干个三角形,用三角形内角和去求多边形内角和,从而得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025委托开发智能数据分析系统软件合同
- 2025标准赠与合同模板
- 2025招聘人员试用合同书(上海教师)
- 2025年国有资产转让合同模板
- 2025商场店铺装修合同模板
- 2025年贷款合同的专项资金借款协议模板
- 2025租赁合同模板:仓库租赁合同范本
- 2025授权软件开发合同范本
- 2025年度合同性捐赠协议
- 2025医疗器械采购合同书模板
- 哈萨克斯坦铁路车站代码
- 装配式建筑设计设计专篇
- 新加坡sm214th面经44踏水行歌
- 《教育心理学》教材
- 绥满公路大庆黄牛场至齐齐哈尔宛屯段扩建项目B4合同段施工组织设计
- 身体红绿灯课件
- 国家职业技能标准 (2021年版) 公共营养师
- Pentacam白内障应用(第二版)
- 抗精神病药物的选择与联合应用
- JJF1059.1测量不确定度评定与表示(培训讲稿)
- 中国电工技术学会科技成果鉴定管理办法
评论
0/150
提交评论