八年级初二数学提高题专题复习勾股定理练习题及答案_第1页
八年级初二数学提高题专题复习勾股定理练习题及答案_第2页
八年级初二数学提高题专题复习勾股定理练习题及答案_第3页
八年级初二数学提高题专题复习勾股定理练习题及答案_第4页
八年级初二数学提高题专题复习勾股定理练习题及答案_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一、选择题1.如图,AB=AC,∠CAB=90°,∠ADC=45°,AD=1,CD=3,则BD的长为()A.3 B. C.2 D.42.已知等边三角形的边长为a,则它边上的高、面积分别是()A. B. C. D.3.如图所示,用四个全等的直角三角形和一个小正方形拼成一个大正方形已知大正方形的面积为49,小正方形的面积为4.用x,y表示直角三角形的两直角边(x>y),请仔细观察图案.下列关系式中不正确的是()A.x2+C.2xy+4=49 D.x+y=134.在ΔABC中,,则∠A()A.一定是锐角 B.一定是直角 C.一定是钝角 D.非上述答案5.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若S1+S2+S3=15,则S2的值是(

)A.3 B. C.5 D.6.如图,在△ABC中,∠ACB=90°,AB的中垂线交AC于D,P是BD的中点,若BC=4,AC=8,则S△PBC为()A.3 B.3.3 C.4 D.4.57.A、B、C分别表示三个村庄,米,米,米,某社区拟建一个文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P的位置应在()A.AB的中点 B.BC的中点C.AC的中点 D.的平分线与AB的交点8.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺,问折高者几何?意思是一根竹子,原高一丈(一丈=10尺)一阵风将竹子折断,某竹梢恰好抵地,抵地处离竹子底部6尺远,则折断处离地面的高度是()A.5.3尺 B.6.8尺 C.4.7尺 D.3.2尺9.如图,是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=10,BE=24,则EF的长是()A.14 B.13 C.14 D.1410.以下列各组数为边长,能组成直角三角形的是()A.1,2,3 B.2,3,4 C.3,4,6 D.1,,2二、填空题11.如图,Rt△ABC中,∠ACB=90o,AC=12,BC=5,D是AB边上的动点,E是AC边上的动点,则BE+ED的最小值为.12.如图,等腰梯形中,,,平分,,则等于_________.13.如图是由边长为1的小正方形组成的网格图,线段AB,BC,BD,DE的端点均在格点上,线段AB和DE交于点F,则DF的长度为_____.14.如图,在四边形ABCD中,∠A=60°,∠B=∠D=90°,AD=4,AB=3,则CD=_________15.已知x,y为一个直角三角形的两边的长,且(x﹣6)2=9,y=3,则该三角形的第三边长为_____.16.如图,P是等边三角形ABC内的一点,且PA=3,PB=4,PC=5,以BC为边在△ABC外作△BQC≌△BPA,连接PQ,则以下结论中正确有_____________(填序号)①△BPQ是等边三角形②△PCQ是直角三角形③∠APB=150°④∠APC=135°17.如图,Rt△ABC中,∠BCA=90°,AB=,AC=2,D为斜边AB上一动点(不与点A,B重合),DE⊥AC,DF⊥BC,垂足分别为E、F,连接EF,则EF的最小值是_____.18.如图,直线与轴、轴分别交于点和点,点是线段上的一点,若将沿折叠,点恰好落在轴上的处,则点的坐标为______.19.如图所示,圆柱体底面圆的半径是,高为1,若一只小虫从A点出发沿着圆柱体的外侧面爬行到C点,则小虫爬行的最短路程是______20.已知:如图,等腰的直角边的长为1,以边上的高为直角边,按逆时针方向作等腰,与相交于点,若再以为直角边按逆时针方向作等腰,与相交于点,按此作法进行下去,得到,,…,则的周长是______.三、解答题21.如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC,AD平分∠BAC,BD⊥AD于点D,E是AB的中点,连接CE交AD于点F,BD=3,求BF的长.22.如图,在矩形ABCD中,AB=8,BC=10,E为CD边上一点,将△ADE沿AE折叠,使点D落在BC边上的点F处.(1)求BF的长;(2)求CE的长.23.如图,已知中,,,,、是边上的两个动点,其中点从点开始沿方向运动,且速度为每秒,点从点开始沿方向运动,且速度为每秒,它们同时出发,设出发的时间为秒.(1)当秒时,求的长;(2)求出发时间为几秒时,是等腰三角形?(3)若沿方向运动,则当点在边上运动时,求能使成为等腰三角形的运动时间.24.如图1,在△ABC中,AB=AC,∠BAC=90°,D为AC边上一动点,且不与点A点C重合,连接BD并延长,在BD延长线上取一点E,使AE=AB,连接CE.(1)若∠AED=20°,则∠DEC=度;(2)若∠AED=a,试探索∠AED与∠AEC有怎样的数量关系?并证明你的猜想;(3)如图2,过点A作AF⊥BE于点F,AF的延长线与EC的延长线交于点H,求证:EH2+CH2=2AE2.25.阅读与理解:折纸,常常能为证明一个命题提供思路和方法.例如,在中,(如图),怎样证明呢?分析:把沿的角平分线翻折,因为,所以,点落在上的点处,即,据以上操作,易证明,所以,又因为,所以.感悟与应用:(1)如图(a),在中,,,平分,试判断和、之间的数量关系,并说明理由;(2)如图(b),在四边形中,平分,,,,①求证:;②求的长.26.如图1,在等腰直角三角形中,动点D在直线AB(点A与点B重合除外)上时,以CD为一腰在CD上方作等腰直角三角形,且,连接AE.(1)判断AE与BD的数量关系和位置关系;并说明理由.(2)如图2,若,P,Q两点在直线AB上且,试求PQ的长.(3)在第(2)小题的条件下,当点D在线段AB的延长线(或反向延长线)上时,判断PQ的长是否为定值.分别画出图形,若是请直接写出PQ的长;若不是请简单说明理由.27.问题情境:综合实践活动课上,同学们围绕“已知三角形三边的长度,求三角形的面积”开展活动,启航小组同学想到借助正方形网格解决问题问题解决:图(1)、图(2)都是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,操作发现,启航小组同学在图(1)中画出△ABC,其顶点A,B,C都在格点上,同时构造长方形CDEF,使它的顶点都在格点上,且它的边EF经过点A,ED经过点B.同学们借助此图求出了△ABC的面积.(1)在图(1)中,△ABC的三边长分别是AB=,BC=,AC=.△ABC的面积是.(2)已知△PMN中,PM=,MN=2,NP=.请你根据启航小组的思路,在图(2)中画出△PMN,并直接写出△RMN的面积.28.如图,在平面直角坐标系中,点是坐标原点,,,均为等边三角形,在轴正半轴上,点,点,点在内部,点在的外部,,,与交于点,连接,,,.(1)求点的坐标;(2)判断与的数量关系,并说明理由;(3)直接写出的周长.29.如图1,已知△ABC是等边三角形,点D,E分别在边BC,AC上,且CD=AE,AD与BE相交于点F.(1)求证:∠ABE=∠CAD;(2)如图2,以AD为边向左作等边△ADG,连接BG.ⅰ)试判断四边形AGBE的形状,并说明理由;ⅱ)若设BD=1,DC=k(0<k<1),求四边形AGBE与△ABC的周长比(用含k的代数式表示).30.已知是等边三角形,点D是BC边上一动点,连结AD如图1,若,,求AD的长;如图2,以AD为边作,分别交AB,AC于点E,F.小明通过观察、实验,提出猜想:在点D运动的过程中,始终有,小明把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的两种想法想法1:利用AD是的角平分线,构造角平分线的性质定理的基本图形,然后通过全等三角形的相关知识获证.想法2:利用AD是的角平分线,构造的全等三角形,然后通过等腰三角形的相关知识获证.请你参考上面的想法,帮助小明证明一种方法即可小聪在小明的基础上继续进行思考,发现:四边形AEDF的面积与AD长存在很好的关系若用S表示四边形AEDF的面积,x表示AD的长,请你直接写出S与x之间的关系式.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】过点A作AE⊥AD交CD于E,连接BE,利用SAS可证明△BAE≌△CAD,利用全等的性质证得∠BED=90°,最后根据勾股定理即可求出BD.【详解】解:如图,过点A作AE⊥AD交CD于E,连接BE.∵∠DAE=90°,∠ADE=45°,∴∠ADE=∠AED=45°,∴AE=AD=1,∴在Rt△ADE中,DE=,∵∠DAE=∠BAC=90°,∴∠DAE+∠EAC=∠BAC+∠EAC,即∠CAD=∠BAE,又∵AB=AC,∴△BAE≌△CAD(SAS),∴CD=BE=3,∠AEB=∠ADC=45°,∴∠BED=90°,∴在Rt△BED中,BD=.故选B.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定与性质,勾股定理等知识,作辅助线构造出全等三角形是解题的关键.2.C解析:C【分析】作出等边三角形一边上的高,利用直角三角形中,30°角所对的直角边等于斜边的一半,得出BD,利用勾股定理即可求出AD,再利用三角形面积公式即可解决问题.【详解】解:如图作AD⊥BC于点D.∵△ABC为等边三角形,∴∠B=60°,∠BAD=30°∴由勾股定理得,∴边长为a的等边三角形的面积为×a×a=a2,故选:C.【点睛】本题考点涉及等边三角形的性质、含30°角的直角三角形、勾股定理以及三角形面积公式,熟练掌握相关性质定理是解题关键.3.D解析:D【解析】【分析】利用勾股定理和正方形的面积公式,对公式进行合适的变形即可判断各个选项是否争取.【详解】A中,根据勾股定理x2B中,根据小正方形的边长是2它等于三角形较长的直角边减较短的直角边即可得到,正确;C中,根据四个直角三角形的面积和加上小正方形的面积即可得到,正确;D中,根据A可得x2+y2=49,C可得故选D.【点睛】本题考查勾股定理.在A、B、C选项的等式中需理解等式的各个部分表示的几何意义,对于D选项是由A、C选项联立得出的.4.A解析:A【解析】【分析】根据以及三角形三边关系可得2bc>a2,再根据(b-c)2≥0,可推导得出b2+c2>a2,据此进行判断即可得.【详解】∵,∴,∴2bc=a(b+c),∵a、b、c是三角形的三条边,∴b+c>a,∴2bc>a·a,即2bc>a2,∵(b-c)2≥0,∴b2+c2-2bc≥0,b2+c2≥2bc,∴b2+c2>a2,∴一定为锐角,故选A.【点睛】本题考查了三角形三边关系、完全平方公式、不等式的传递性、勾股定理等,题目较难,得出b2+c2>a2是解题的关键.5.C解析:C【解析】将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,S1+S2+S3=15,∴得出S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=15,即3x+12y=15,x+4y=5,所以S2=x+4y=5,故答案为5.点睛:将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,用x,y表示出S1,S2,S3,再利用S1+S2+S3=15求解是解决问题的关键.6.A解析:A【分析】根据线段垂直平分线的性质得到DA=DB,根据勾股定理求出BD,得到CD的长,根据三角形的面积公式计算,得到答案.【详解】解:∵点D在线段AB的垂直平分线上,∴DA=DB,在Rt△BCD中,BC2+CD2=BD2,即42+(8﹣BD)2=BD2,解得,BD=5,∴CD=8﹣5=3,∴△BCD的面积=×CD×BC=×3×4=6,∵P是BD的中点,∴S△PBC=S△BCD=3,故选:A.【点睛】本题考查的是线段垂直平分线的性质、直角三角形的性质、勾股定理,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.7.A解析:A【分析】先计算AB2=2890000,BC2=640000,AC2=2250000,可得BC2+AC2=AB2,那么△ABC是直角三角形,而直角三角形斜边上的中线等于斜边的一半,从而可确定P点的位置.【详解】解:如图∵AB2=2890000,BC2=640000,AC2=2250000∴BC2+AC2=AB2,∴△ABC是直角三角形,∴活动中心P应在斜边AB的中点.故选:A.【点睛】本题考查了勾股定理的逆定理.解题的关键是证明△ABC是直角三角形.8.D解析:D【分析】根据题意结合勾股定理得出折断处离地面的长度即可.【详解】解:设折断处离地面的高度OA是x尺,根据题意可得:x2+62=(10-x)2,解得:x=3.2,答:折断处离地面的高度OA是3.2尺.故选D.【点睛】此题主要考查了勾股定理的应用,根据题意正确应用勾股定理是解题关键.9.D解析:D【分析】24和10为两条直角边长时,求出小正方形的边长14,即可利用勾股定理得出EF的长.【详解】解:∵AE=10,BE=24,即24和10为两条直角边长时,小正方形的边长=24-10=14,∴EF=.故选D.【点睛】本题考查了勾股定理、正方形的性质;熟练掌握勾股定理是解决问题的关键.10.D解析:D【分析】根据勾股定理的逆定理,只要两边的平方和等于第三边的平方即可构成直角三角形.【详解】解:A、12+22=5≠32,故不符合题意;B、22+32=13≠42,故不符合题意;C、32+42=25≠62,故不符合题意;D、12+=4=22,符合题意.故选D.【点睛】本题主要考查了勾股定理的逆定理,已知三条线段的长,判断是否能构成直角三角形的三边,简便的方法是:判断两个较小的数的平方和是否等于最大数的平方即可.二、填空题11.【解析】试题分析:作点B关于AC的对称点B′,过B′点作B′D⊥AB于D,交AC于E,连接AB′、BE,则BE+ED=B′E+ED=B′D的值最小.∵点B关于AC的对称点是B′,BC=5,∴B′C=5,BB′=10.∵Rt△ABC中,∠ACB=90°,AC=12,BC=5,∴AB==13,∵S△ABB′=•AB•B′D=•BB′•AC,∴B′D=,∴BE+ED=B′D=.考点:轴对称-最短路线问题.12.3【分析】由,平分,易证得是等腰三角形,即可求得,又由四边形是等腰梯形,易证得,然后由,根据直角三角形的两锐角互余,即可求得,则可求得的值,继而求得的值.【详解】解:∵,,∴,,∵平分,∴,,∴,∴,∴,∵,∴,∵三角形内角和为180°,∴,∴,∴,∴.故答案为:3.【点睛】本题主要考查对勾股定理,含30度角的直角三角形,等腰三角形的性质和判定,平行线的性质,等腰梯形的性质等知识点的理解和掌握,综合运用这些性质进行推理和计算是解此题的关键.13.2【分析】连接AD、CD,由勾股定理得:,,,得出AB=DE=BC,,由此可得△ABD为直角三角形,同理可得△BCD为直角三角用形,继而得出A、D、C三点共线.再证明△ABC≌△DEB,得出∠BAC=∠EDB,得出DF⊥AB,BD平分∠ABC,再由角平分线的性得出DF=DG=2即可的解.【详解】连接AD、CD,如图所示:由勾股定理可得,,,,∵BE=BC=5,∴AB=DE=AB=BC,,∴△ABD是直角三角形,∠ADB=90°,同理可得:△BCD是直角三角形,∠BDC=90°,∴∠ADC=180°,∴点A、D、C三点共线,∴,在△ABC和△DEB中,,∴△ABC≌△DEB(SSS),∴∠BAC=∠EDB,∵∠EDB+∠ADF=90°,∴∠BAD+∠ADF=90°,∴∠BFD=90°,∴DF⊥AB,∵AB=BC,BD⊥AC,∴BD平分∠ABC,∵DG⊥BC,∴DF=DG=2.【点睛】本题考查全等三角形的性质与判定以及勾股定理的相关知识,解题的关键是熟练掌握勾股定理和过股定理的逆定理.14.2【解析】【分析】延长BC,AD交于E点,在直角三角形ABE和直角三角形CDE中,根据30°角所对的直角边等于斜边的一半和勾股定理即可解答.【详解】如图,延长AD、BC相交于E,∵∠A=60°,∠B=∠ADC=90°,∴∠E=30°∴AE=2AB,CE=2CD∵AB=3,AD=4,∴AE=6,DE=2设CD=x,则CE=2x,DE=3x即3x=2x=2即CD=2故答案为:2【点睛】本题考查了勾股定理的运用,含30°角所对的直角边是斜边的一半的性质,本题中构建直角△ABE和直角△CDE,是解题的关键.15.,或【解析】【详解】∵(x-6)2=9,∴x-6=±3,解得:x1=9,x2=3,∵x,y为一个直角三角形的两边的长,y=3,∴当x=3时,x、y都为直角三角形的直角边,则斜边为;当x=9时,x、y都为直角三角形的直角边,则斜边为;当x=9时,x为斜边、y为直角边,则第三边为.故答案为:,或.【点睛】本题主要考查了勾股定理的应用,正确分类讨论是解决问题的关键,解题时注意一定不要漏解.16.①②③【解析】【详解】解:∵△ABC是等边三角形,∵△BQC≌△BPA,∴∠BPA=∠BQC,BP=BQ=4,QC=PA=3,∠ABP=∠QBC,∴△BPQ是等边三角形,①正确.∴PQ=BP=4,即△PQC是直角三角形,②正确.∵△BPQ是等边三角形,∵△BQC≌△BPA,∴∠APB=∠BQC,③正确.即④错误.故答案为①②③.17.【解析】试题分析:根据勾股定理可求出BC=1,然后根据∠BCA=90°,DE⊥AC,DF⊥BC,证得四边形CEDF是矩形,连接CD,则CD=EF,当CD⊥AB时,CD最短,即EF=CD=.故答案为.点睛:本题考查了勾股定理的运用,矩形的判定和性质以及垂线段最短的性质,同时也考查了学生综合运用性质进行推理和计算的能力.18.(0,).【分析】由求出点A、B的坐标,利用勾股定理求得AB的长度,由此得到,设点C的坐标为(0,m),利用勾股定理解得m的值即可得到答案.【详解】在中,当x=0时,得y=2,∴A(0,2)当y=0时,得,∴,∴B(,0),在Rt△AOB中,∠AOB=90,OA=2,OB=,∴,∴,设点C的坐标为(0,m)由翻折得,∴,在Rt中,,∴,解得m=,∴点C的坐标为(0,).故答案为:(0,).【点睛】此题考查勾股定理,翻折的性质,题中由翻折得是解题的关键,得到OC与A’C的数量关系,利用勾股定理求出点C的坐标.19.【分析】先将图形展开,再根据两点之间线段最短可知.【详解】圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,C是边的中点,矩形的宽即高等于圆柱的母线长.∵AB=π•=2,CB=1.∴AC==,故答案为:.【点睛】圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,矩形的宽即高等于圆柱的母线长.本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.20.【分析】依次求出在Rt△OAB中,OA1=;在Rt△OA1B1中,OA2=OA1=()2;依此类推:在Rt△OA5B5中,OA6=()6,由此可求出△OA6B6的周长.【详解】∵等腰的直角边的长为1,∴在Rt△OA1B1中OA1=OA=,在中OA2=OA1=()2,…故在Rt△OA6B6中OA6=OA5=()6=OB6=OB6=故△OA6B6的周长是=+2×()6=+2×=.故答案为:.【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.三、解答题21.BF的长为【分析】先连接BF,由E为中点及AC=BC,利用三线合一可得CE⊥AB,进而可证△AFE≌△BFE,再利用AD为角平分线以及三角形外角定理,即可得到∠BFD为45°,△BFD为等腰直角三角形,利用勾股定理即可解得BF.【详解】解:连接BF.∵CA=CB,E为AB中点∴AE=BE,CE⊥AB,∠FEB=∠FEA=90°在Rt△FEB与Rt△FEA中,∴Rt△FEB≌Rt△FEA又∵AD平分∠BAC,在等腰直角三角形ABC中∠CAB=45°∴∠FBE=∠FAE=∠CAB=22.5°在△BFD中,∠BFD=∠FBE+∠FAE=45°又∵BD⊥AD,∠D=90°∴△BFD为等腰直角三角形,BD=FD=3∴【点睛】本题主要考查等腰直角三角形的性质及判定、三角形全等的性质及判定、三角形外角、角平分线,解题关键在于熟练掌握等腰直角三角形的性质.22.(1)BF长为6;(2)CE长为3,详细过程见解析.【分析】(1)由矩形的性质及翻折可知,∠B=90°,AF=AD=10,且AB=8,在ABF中,可由勾股定理求出BF的长;(2)设CE=x,根据翻折可知,EF=DE=8-x,由(1)可知BF=6,则CF=4,在CEF中,可由勾股定理求出CE的长.【详解】解:(1)∵四边形ABCD为矩形,∴∠B=90°,且AD=BC=10,又∵AFE是由ADE沿AE翻折得到的,∴AF=AD=10,又∵AB=8,在ABF中,由勾股定理得:,故BF的长为6.(2)设CE=x,∵四边形ABCD为矩形,∴CD=AB=8,∠C=90°,DE=CD-CE=8-x,又∵△AFE是由△ADE沿AE翻折得到的,∴FE=DE=8-x,由(1)知:BF=6,故CF=BC-BF=10-6=4,在CEF中,由勾股定理得:,∴,解得:x=3,故CE的长为3.【点睛】本题考查了折叠的性质:折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,利用勾股定理求解是本题的关键.23.(1);(2);(3)5.5秒或6秒或6.6秒【分析】(1)根据点、的运动速度求出,再求出和,用勾股定理求得即可;(2)由题意得出,即,解方程即可;(3)当点在边上运动时,能使成为等腰三角形的运动时间有三种情况:①当时(图,则,可证明,则,则,从而求得;②当时(图,则,易求得;③当时(图,过点作于点,则求出,,即可得出.【详解】(1)解:(1),,,;(2)解:根据题意得:,即,解得:;即出发时间为秒时,是等腰三角形;(3)解:分三种情况:①当时,如图1所示:则,,,,,,,秒.②当时,如图2所示:则秒.③当时,如图3所示:过点作于点,则,,,秒.由上可知,当为5.5秒或6秒或6.6秒时,为等腰三角形.【点睛】本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质;本题有一定难度,注意分类讨论思想的应用.24.(1)45度;(2)∠AEC﹣∠AED=45°,理由见解析;(3)见解析【分析】(1)由等腰三角形的性质可求∠BAE=140°,可得∠CAE=50°,由等腰三角形的性质可得∠AEC=∠ACE=65°,即可求解;(2)由等腰三角形的性质可求∠BAE=180°﹣2α,可得∠CAE=90°﹣2α,由等腰三角形的性质可得∠AEC=∠ACE=45°+α,可得结论;(3)如图,过点C作CG⊥AH于G,由等腰直角三角形的性质可得EH=EF,CH=CG,由“AAS”可证△AFB≌△CGA,可得AF=CG,由勾股定理可得结论.【详解】解:(1)∵AB=AC,AE=AB,∴AB=AC=AE,∴∠ABE=∠AEB,∠ACE=∠AEC,∵∠AED=20°,∴∠ABE=∠AED=20°,∴∠BAE=140°,且∠BAC=90°∴∠CAE=50°,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=∠ACE=65°,∴∠DEC=∠AEC﹣∠AED=45°,故答案为:45;(2)猜想:∠AEC﹣∠AED=45°,理由如下:∵∠AED=∠ABE=α,∴∠BAE=180°﹣2α,∴∠CAE=∠BAE﹣∠BAC=90°﹣2α,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=45°+α,∴∠AEC﹣∠AED=45°;(3)如图,过点C作CG⊥AH于G,∵∠AEC﹣∠AED=45°,∴∠FEH=45°,∵AH⊥BE,∴∠FHE=∠FEH=45°,∴EF=FH,且∠EFH=90°,∴EH=EF,∵∠FHE=45°,CG⊥FH,∴∠GCH=∠FHE=45°,∴GC=GH,∴CH=CG,∵∠BAC=∠CGA=90°,∴∠BAF+∠CAG=90°,∠CAG+∠ACG=90°,∴∠BAF=∠ACG,且AB=AC,∠AFB=∠AGC,∴△AFB≌△CGA(AAS)∴AF=CG,∴CH=AF,∵在Rt△AEF中,AE2=AF2+EF2,∴(AF)2+(EF)2=2AE2,∴EH2+CH2=2AE2.【点睛】本题是综合了等腰直角三角形的性质,全等三角形的性质与判定的动点问题,三个问题由易到难,在熟练掌握各个相关知识的基础上找到问题之间的内部联系,层层推进去解答是关键.25.(1)BC−AC=AD;理由详见解析;(2)①详见解析;②AB=14【分析】(1)在CB上截取CE=CA,连接DE,证△ACD≌△ECD得DE=DA,∠A=∠CED=60°,据此∠CED=2∠CBA,结合∠CED=∠CBA+∠BDE得出∠CBA=∠BDE,即可得DE=BE,进而得出答案;(2)①在AB上截取AM=AD,连接CM,先证△ADC≌△AMC,得到∠D=∠AMC,CD=CM,结合CD=BC知CM=CB,据此得∠B=∠CMB,根据∠CMB+∠CMA=180°可得;②设BN=a,过点C作CN⊥AB于点N,由CB=CM知BN=MN=a,CN2=BC2−BN2=AC2−AN2,可得关于a的方程,解之可得答案.【详解】解:(1)BC−AC=AD.理由如下:如图(a),在CB上截取CE=CA,连接DE,∵CD平分∠ACB,∴∠ACD=∠ECD,又CD=CD,∴△ACD≌△ECD(SAS),∴DE=DA,∠A=∠CED=60°,∴∠CED=2∠CBA,∵∠CED=∠CBA+∠BDE,∴∠CBA=∠BDE,∴DE=BE,∴AD=BE,∵BE=BC−CE=BC−AC,∴BC−AC=AD.(2)①如图(b),在AB上截取AM=AD,连接CM,∵AC平分∠DAB,∴∠DAC=∠MAC,∵AC=AC,∴△ADC≌△AMC(SAS),∴∠D=∠AMC,CD=CM=12,∵CD=BC=12,∴CM=CB,∴∠B=∠CMB,∵∠CMB+∠CMA=180°,∴∠B+∠D=180°;②设BN=a,过点C作CN⊥AB于点N,∵CB=CM=12,∴BN=MN=a,在Rt△BCN中,,在Rt△ACN中,,则,解得:a=3,即BN=MN=3,则AB=8+3+3=14,∴AB=14.【点睛】本题考查了四边形的综合题,以及全等三角形的判定与性质、勾股定理、等腰三角形的判定与性质;本题有一定难度,需要通过作辅助线证明三角形全等才能得出结果.26.(1)AE=BD且AE⊥BD;(2)6;(3)PQ为定值6,图形见解析【分析】(1)由“SAS”可证△ACE≌△BCD,可得AE=BD,∠EAC=∠DBC=45°,可得AE⊥BD;(2)由等腰三角形的性质可得PA=AQ,由勾股定理可求PA的长,即可求PQ的长;(3)分两种情况讨论,由“SAS”可证△ACE≌△BCD,可得AE=BD,∠EAC=∠DBC,可得AE⊥BD,由等腰三角形的性质可得PA=AQ,由勾股定理可求PA的长,即可求PQ的长.【详解】解:(1)AE=BD,AE⊥BD,理由如下:∵△ABC,△ECD都是等腰直角三角形,∴AC=BC,CE=CD,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB,且AC=BC,CE=CD,∴△ACE≌△BCD(SAS)∴AE=BD,∠EAC=∠DBC=45°,∴∠EAC+∠CAB=90°,∴AE⊥BD;(2)∵PE=EQ,AE⊥BD,∴PA=AQ,∵EP=EQ=5,AE=BD=4,∴AQ=,∴PQ=2AQ=6;(3)如图3,若点D在AB的延长线上,∵△ABC,△ECD都是等腰直角三角形,∴AC=BC,CE=CD,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB,且AC=BC,CE=CD,∴△ACE≌△BCD(SAS)∴AE=BD,∠CBD=∠CAE=135°,且∠CAB=45°,∴∠EAB=90°,∵PE=EQ,AE⊥BD,∴PA=AQ,∵EP=EQ=5,AE=BD=4,∴AQ=,∴PQ=2AQ=6;如图4,若点D在BA的延长线上,∵△ABC,△ECD都是等腰直角三角形,∴AC=BC,CE=CD,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB,且AC=BC,CE=CD,∴△ACE≌△BCD(SAS)∴AE=BD,∠CBD=∠CAE=45°,且∠CAB=45°,∴∠EAB=90°,∵PE=EQ,AE⊥BD,∴PA=AQ,∵EP=EQ=5,AE=BD=4,∴AQ=,∴PQ=2AQ=6.【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,勾股定理等知识,证明AE⊥BD是本题的关键.27.(1),,,;(2)图见解析;7.【分析】(1)利用勾股定理求出AB,BC,AC,理由分割法求出△ABC的面积.(2)模仿(1)中方法,画出△

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论