版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第十章计数原理、概率、随机变量及其分布第七讲正态分布知识梳理·双基自测名师讲坛·素养提升考点突破·互动探究知识梳理·双基自测X~N(μ,σ2)上方x=μx=μ1集中分散(2)正态总体在三个特殊区间内取值的概率值(3σ原则):①P(μ-σ≤X≤μ+σ)≈________________;②P(μ-2σ≤X≤μ+2σ)≈________________;③P(μ-3σ≤X≤μ+3σ)≈________________.3σ原则:主要用于判定产品质量是否合格,机器运行是否正常等,也就是说3σ之外的概率是小概率事件,如果发生了说明产品不合格、机器运行不正常等.0.68270.95450.9973对于正态分布N(μ,σ2),由x=μ是正态曲线的对称轴知(1)P(X≥μ)=P(X≤μ)=0.5;(2)对任意的a有P(X<μ-a)=P(X>μ+a);(3)P(X<x0)=1-P(x≥x0);(4)P(a<X<b)=P(X<b)-P(X≤a).注:在X服从正态分布,即X~N(μ,σ2)时,要充分利用正态曲线的关于直线x=μ对称和曲线与x轴之间的面积为1.√√√×题组二走进教材2.(选择性必修3P87T2)某市高二年级男生的身高X(单位:cm)近似服从正态分布N(170,52),则P(165<X≤180)=________________.0.8186题组三走向高考3.(2022·新高考Ⅱ卷)已知随机变量X服从正态分布N(2,σ2),且P(2<X≤2.5)=0.36,则P(X>2.5)=___________.[解析]
因为X~N(2,σ2),所以P(X<2)=P(X>2)=0.5,因此P(X>2.5)=P(X>2)-P(2<X≤2.5)=0.5-0.36=0.14.0.14C5.(2021·全国新高考Ⅱ)某物理量的测量结果服从正态分布N(10,σ2),下列结论中不正确的是(
)A.σ越小,该物理量在一次测量中在(9.9,10.1)的概率越大B.σ越小,该物理量在一次测量中大于10的概率为0.5C.σ越小,该物理量在一次测量中小于9.99与大于10.01的概率相等D.σ越小,该物理量在一次测量中落在(9.9,10.2)与落在(10,10.3)的概率相等D[解析]
对于A,σ2为数据的方差,所以σ越小,数据在μ=10附近越集中,所以测量结果落在(9.9,10.1)内的概率越大,故A正确;对于B,由正态分布密度曲线的对称性可知该物理量一次测量大于10的概率为0.5,故B正确;对于C,由正态分布密度曲线的对称性可知该物理量一次测量结果大于10.01的概率与小于9.99的概率相等,故C正确;对于D,因为该物理量一次测量结果落在(9.9,10.0)的概率与落在(10.2,10.3)的概率不同,所以一次测量结果落在(9.9,10.2)的概率与落在(10,10.3)的概率不同,故D错误.故选D.考点突破·互动探究
(1)(2023·广东佛山南海区、三水区联考)李明上学有时坐公交车,有时骑自行车,他各记录了50次坐公交车和骑自行车所花的时间,经数据分析得到,假设坐公交车用时X和骑自行车用时Y都服从正态分布,X~N(μ1,62),Y~N(μ2,22).X和Y的分布密度曲线如图所示.则下列结果正确的是(
)A.D(X)=6B.μ1>μ2C.P(X≤38)<P(Y≤38)D.P(X≤34)<P(Y≤34)例1考点一正态分布的性质——自主练透C(2)(2022·河北唐山模拟)已知随机变量X服从正态分布N(0,1),随机变量Y服从正态分布N(1,1),且P(X>1)=0.1587,则P(1<Y<2)=(
)A.0.1587 B.0.3413C.0.8413 D.0.6587B对X~N(μ,σ2)中的μ,σ的意义不清楚,特别是对μ的认识不清楚,就会在解题时无从下手,导致随便给出一个结果.这里μ是随机变量X的均值,σ是标准差,x=μ是正态分布密度曲线的对称轴.涉及多条正态曲线问题常用正态总体在三个特殊区间内分布的概率为常数(3σ原则)进行互化.D角度1正态曲线的对称性(2023·黑龙江哈尔滨质检)某市有30000人参加阶段性学业水平检测,检测结束后的数学成绩X服从正态分布N(120,σ2),若P(100≤X≤120)=0.495,则成绩在140分以上的大约为_________人.例2考点二正态分布——多维探究150角度2确定正态曲线的对称轴(2022·福建模拟)已知随机变量X服从正态分布N(μ,σ2),若P(X<3)+P(X≤1)=1,则μ=_____.例3[解析]
因为X服从正态分布N(μ,σ2),所以P(X<3)+P(X≥3)=1,所以P(X≤1)=P(X≥3),由正态曲线的对称性知对称轴为X=2,所以μ=2.2例3A关于正态总体在某个区间内取值的概率求法(1)熟记P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)的值;(2)充分利用正态曲线的对称性和曲线与x轴之间面积为1.①正态曲线关于直线x=μ对称,从而在关于x=μ对称的区间上概率相等;②P(X<a)=1-P(X≥a),P(X<μ-a)=P(X≥μ+a).C(3)(角度3)(2023·江苏南京调研)已知随机变量X~N(4,22),则P(8<X<10)的值约为(
)附:若Y~N(μ,σ2),则P(μ-σ<Y<μ+σ)≈0.6827,P(μ-2σ<Y<μ+2σ)≈0.9545,P(μ-3σ<Y<μ+3σ)≈0.9974.A.0.0215 B.0.1359C.0.8186 D.0.9760A例3考点三正态分布的综合应用A(2)(2022·山东青岛二模)为调查禽类某种病菌感染情况,某养殖场每周都定期抽样检测禽类血液中A指标的值.养殖场将某周的5000只家禽血液样本中A指标的检测数据进行整理,绘成如下频率分布直方图①根据频率分布直方图,估计这5000只家禽血液样本中A指标值的中位数(结果保留两位小数);②通过长期调查分析可知,该养殖场家禽血液中A指标的值X服从正态分布N(7.4,2.632).(ⅰ)若其中一个养殖棚有1000只家禽,估计其中血液A指标的值不超过10.03的家禽数量(结果保留整数);(ⅱ)在统计学中,把发生概率小于1%的事件称为小概率事件,通常认为小概率事件的发生是不正常的.该养殖场除定期抽检外,每天还会随机抽检20只,若某天发现抽检的20只家禽中恰有3只血液中A指标的值大于12.66,判断这一天该养殖场的家禽健康状况是否正常,并分析说明理由.参考数据:①0.022753≈0.00001,0.9772517≈0.7;②若X~N(μ,σ2),则P(μ-σ≤X≤μ+σ)≈0.6827;P(μ-2σ≤X≤μ+2σ)≈0.9545.解决正态分布问题的三个关键点若随机变量X~N(μ,σ2),则(1)对称轴x=μ;(2)标准差σ;(3)分布区间.利用对称性可求指定范围内的概率值;由μ,σ,分布区间的特征进行转化,使分布区间转化为3σ特殊区间,从而求出所求概率(2)(2023·山东“学情空间”教研共同体联考)《中国制造2025》是经国务院总理李克强签批,由国务院于2015年5月印发的部署全面推进实施制造强国的战略文件,是中国实施制造强国战略第一个十年的行动纲领.制造业是国民经济的主体,是立国之本、兴国之器、强国之基.发展制造业的基本方针为质量为先,坚持把质量作为建设制造强国的生命线.某制造企业根据长期检测结果,发现生产的产品质量与生产标准的质量差都服从正态分布N(μ,σ2),并把质量差在(μ-σ,μ+σ)内的产品为优等品,质量差在(μ+σ,μ+2σ)内的产品为一等品,其余范围内的产品作为废品处理.优等品与一等品统称为正品.现分别从该企业生产的正品和废品中随机抽取1000件,测得产品质量差的样本数据统计如下:(参考数据:若随机变量ξ服从正态分布N(μ,σ2),则:P(μ-σ<ξ≤μ+σ)≈0.6827,P(μ-2σ<ξ≤μ+2σ)≈0.9545,P(μ-3σ<ξ≤μ+3σ)≈0.9973.)③假如企业包装时要求把3件优等品和5件一等品装在同一个箱子中,质检员每次从箱子中摸出三件产品进行检验,记摸出三件产品中优等品的件数为X,求X的分布列以及期望值.名师讲坛·素养提升题型一概率与统计图表的综合应用(2023·上海八校联考)研究表明,过量的碳排放会导致全球气候变暖等环境问题,减少碳排放具有深远的意义.中国明确提出节能减排的目标与各项措施,在公路交通运输领域,新能源汽车逐步取代燃油车是措施之一.中国某地区从2015年至2021年每年汽车总销量如图,每年新能源汽车销量占比如表.(注:汽车总销量指新能源汽车销量与非新能源汽车销量之和)例6概率与统计的综合应用(1)从2015年至2021年中随机选取一年,求这一年该地区汽车总销量不小于5.5万辆的概率;(2)从2015年至2021年中随机选取两年,设X表示新能源汽车销量超过0.5万辆的年份的个数,求X的分布列和数学期望.(2)由图表得新能源汽车2015~2021年的销量如下表:新能源汽车销量超过0.5万辆的年份有2个,不超过0.5万辆的年份有5个,则随机变量X可能的取值为0,1,2,年份2015201620172018201920202021新能源汽车销量0.06150.1120.1680.2750.4560.541.16题型二概率与回归分析的综合应用(2022·山东临沂模拟)在疫情防控常态化的背景下,山东省政府各部门在保安全、保稳定的前提下有序恢复生产、生活和工作秩序,五一期间,文旅部门在落实防控举措的同时,推出了多款套票文旅产品,得到消费者的积极回应.下面是文旅部门在某地区推出六款不同价位的旅游套票,每款的套票价格x(单位:元)与购买人数y(单位:万人)的数据如下表:例6旅游类别城市展馆科技游乡村特色游齐鲁红色游登山套票游园套票观海套票套票价格x(元)394958677786购买数量y(万人)16.718.720.622.524.125.6在分析数据、描点绘图中,发现散点(vi,ωi)(1≤i≤6)集中在一条直线附近,其中vi=lnxi,ωi=lnyi题型三概率与独立性检验的综合应用(2023·山东青岛调研)为了有针对性地提高学生体育锻炼的积极性,某中学需要了解性别因素是否对学生体育锻炼的经常性有影响,为此随机抽查了男、女生各100名,得到如下数据:例6性别锻炼不经常经常女生4060男生2080(1)根据小概率值α=0.005的独立性检验,分析性别因素与学生体育锻炼的经常性有无关联;(2)从这200人中随机选择1人,已知选到的学生经常参加体育锻炼,求他是男生的概率;α0.0100.0050.001xα6.6357.87910.828例6〔变式训练4〕(1)(2023·甘肃张掖诊断)某“双一流”大学专业奖学金以所学专业各科考试成绩作为评选依据,分为专业一等奖学金(奖金额3000元)、专业二等奖学金(奖金额1500元)及专业三等奖学金(奖金额600元),且专业奖学金每个学生一年最多只能获得一次.图(1)是统计了该校2022年500名学生周课外平均学习时间频率分布直方图,图(2)是这500名学生在2022年周课外平均学习时间段获得专业奖学金的频率柱状图.①求这500名学生中获得专业三等奖学金的人数;②若周课外平均学习时间超过35小时称为“努力型”学生,否则称为“非努力型”学生,列2×2列联表并判断是否有99.9%的把握认为该校学生获得专业一、二等奖学金与是否是“努力型”学生有关?①若将该部门获得决赛资格的小组数记为X,求X的分布列与数学期望;②比赛规定:参与决赛的小组由4人组成,每人必须答题且只答题一次(与答题顺序无关),若4人全部答对就给予奖金,若没有全部答对但至少2人答对就被评为“优秀小组”.该部门对通过初赛的某一小组进行党史知识培训,使得每个成员答对每题的概率均为p(0<p<1)且相互独立,设该参赛小组被评为“优秀小组”的概率为f(p),当p=p0时,f(p)最大,试求p0的值.[解析]
(1)①获得三等奖学金的频率为:(0.008+0.016+0.04)×5×0.15+(0.04+0.056+0.016)×5×0.4+(0.016+0.008)×5×0.4=0.32,50
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安装工程合同协议范本3篇
- 旅游导游聘用合同3篇
- 工业往来借款合同3篇
- 文明实践守则3篇
- 数据采集服务合同3篇
- 旅游住宿服务施工协议3篇
- 换热机组招标项目招标答疑3篇
- 安全骑行责任在我3篇
- 施工分包桩基协议3篇
- 居家养老协议书范文3篇
- 贵州省遵义市播州区2023-2024学年八年级上学期期末数学试卷(含解析)
- 远大住工-装配式建筑发展现状和技术标准
- 人教版2023-2024学年四年级数学上册典型例题系列 第四单元:促销问题与“买几送几”专项练习(解析版)
- 浅析国产手机小米品牌形象塑造与维护
- 试制过程记录表
- 2024届浙江省宁波市镇海区镇海中学高一物理第一学期期末质量检测试题含解析
- 道路运输安全生产目标责任书
- 高中音乐-《锦鸡出山》教学课件设计
- 初中历史复习策略
- 常用介电常数
- 随班就读案例
评论
0/150
提交评论