




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省梅州市2024届八年级数学第一学期期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.点的位置在A.第一象限 B.第二象限 C.第三象限 D.第四象限2.小明想用一长方形的硬纸片折叠成一个无盖长方体收纳盒,硬纸片长为a+1,宽为a-1,如图,在硬纸片的四角剪裁出4个边长为1的正方形,沿着图中虚线折叠,这个收纳盒的体积是()A.a2-1 B.a2-2a C.a2-1 D.a2-4a+33.下列四组数据中,能作为直角三角形三边长的是()A.1,2,3 B.,3, C.,, D.0.3,0.4,0.54.某市为了处理污水需要铺设一条长为2000米的管道,实际施工时,×××××××,设原计划每天铺设管道米,则可列方程,根据此情景,题目中的“×××××××”表示所丢失的条件,这一条件为()A.每天比原计划多铺设10米,结果延期10天完成任务B.每天比原计划少铺设10米,结果延期10天完成任务C.每天比原计划少铺设10米,结果提前10天完成任务D.每天比原计划多铺设10米,结果提前10天完成任务5.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,若BC=6,AC=5,则△ACE的周长为()A.8 B.11 C.16 D.176.下列式子中,计算结果等于a9的是()A.a3+a6B.a1.aC.(a6)3D.a12÷a27.某工厂的厂门形状如图(厂门上方为半圆形拱门),现有四辆装满货物的卡车,外形宽都是2.0米,高分别为2.8米,3.1米,3.4米,3.7米,则能通过该工厂厂门的车辆数是()(参考数据:,,)A.1 B.2 C.3 D.48.如图,在中,,是的平分线,若,,则为()A. B. C. D.9.若正多边形的一个外角是45°,则该正多边形从一个顶点出发的对角线的条数为()A.4 B.5 C.6 D.810.把分式中的x、y的值同时扩大为原来的10倍,则分式的值()A.缩小为原来的 B.不变C.扩大为原来的10倍 D.扩大为原来的100倍二、填空题(每小题3分,共24分)11.如图所示,△ABC中,点D,E分别是AC,BD上的点,且∠A=65°,∠ABD=∠DCE=30°,则∠BEC的度数是________.12.若分式的值为0,则的值为______.13.已知点A(a,1)与点B(5,b)关于y轴对称,则=_____.14.已知等腰三角形的一个内角是80°,则它的底角是°.15.某公司招聘职员,公司对应聘者进行了面试和笔试(满分均为100分),规定笔试成绩占60%,面试成绩占40%,应聘者张华的笔试成绩和面试成绩分别为95分和90分,她的最终得分是_____分.16.如图,在平面直角坐标系中,△ABC是等腰直角三角形,∠ABC=90°,AB平行x轴,点C在x轴上,若点A,B分别在正比例函数y=6x和y=kx的图象上,则k=__________.17.如图,在中,,是边上两点,且所在的直线垂直平分线段,平分,,则的长为________.18.已知等腰三角形的一个内角是,则它的底角是__________.三、解答题(共66分)19.(10分)如图,某中学校园内有一块长为米,宽为米的长方形地块.学校计划在中间留一块边长为米的正方形地块修建一座雕像,然后将阴影部分进行绿化.(1)求绿化的面积.(用含的代数式表示)(2)当时,求绿化的面积.20.(6分)如图,在中,,请用尺规在上作一点,使得直线平分的面积.21.(6分)已知二元一次方程,通过列举将方程的解写成下列表格的形式:-156650如果将二元一次方程的解所包含的未知数的值对应直角坐标系中一个点的横坐标,未知数的值对应这个点的纵坐标,这样每一个二元一次方程的解,就可以对应直角坐标系中的一个点,例如:方程的解的对应点是.(1)表格中的________,___________;(2)通过以上确定对应点坐标的方法,将表格中给出的五个解依次转化为对应点的坐标,并在所给的直角坐标系中画出这五个点;根据这些点猜想方程的解的对应点所组成的图形是_________,并写出它的两个特征①__________,②_____________;(3)若点恰好落在的解对应的点组成的图形上,求的值.22.(8分)如图,AC=DC,BC=EC,∠ACD=∠BCE.求证:∠A=∠D.23.(8分)如图所示,四边形ABCD中AB=AD,AC平分∠BCD,AE⊥BC,AF⊥CD,图中有无和△ABE全等的三角形?请说明理由24.(8分)解方程(组)(1)2(x-3)-3(x-5)=7(x-1)(2)=1(3)(4)25.(10分)已知:如图①所示的三角形纸片内部有一点P.任务:借助折纸在纸片上画出过点P与BC边平行的线段FG.阅读操作步骤并填空:小谢按图①~图④所示步骤进行折纸操作完成了画图任务.在小谢的折叠操作过程中,(1)第一步得到图②,方法是:过点P折叠纸片,使得点B落在BC边上,落点记为,折痕分别交原AB,BC边于点E,D,此时∠即∠=__________°;(2)第二步得到图③,参考第一步中横线上的叙述,第二步的操作指令可叙述为:_____________,并求∠EPF的度数;(3)第三步展平纸片并画出两次折痕所在的线段ED,FG得到图④.完成操作中的说理:请结合以上信息证明FG∥BC.26.(10分)发现任意三个连续的整数中,最大数与最小数这两个数的平方差是4的倍数;验证:(1)的结果是4的几倍?(2)设三个连续的整数中间的一个为n,计算最大数与最小数这两个数的平方差,并说明它是4的倍数;延伸:说明任意三个连续的奇数中,最大的数与最小的数这两个数的平方差是8的倍数.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据各象限内点的坐标特点,再根据M点的坐标符号,即可得出答案.【题目详解】解:∵点M(-2019,2019),∴点M所在的象限是第二象限.故选B.【题目点拨】本题考查各象限内点的坐标的符号特征,解题的关键是熟记各象限内点的坐标的符号,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2、D【分析】根据图形,表示出长方体的长、宽、高,根据多项式乘以多项式的法则,计算即可.【题目详解】解:依题意得:无盖长方体的长为:a+1-2=a-1;无盖长方体的宽为:a-1-2=a-3;无盖长方体的高为:1∴长方体的体积为故选:D【题目点拨】本题主要考查多项式乘以多项式,熟记多项式乘以多项式的法则是解决此题的关键,此类问题中还要注意符号问题.3、D【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【题目详解】解:A、12+22≠32,根据勾股定理的逆定理可知不能作为直角三角形三边长;
B、()2+()2≠32,根据勾股定理的逆定理可知不能作为直角三角形三边长;C、(32)2+(42)2≠(52)2,根据勾股定理的逆定理可知不能作为直角三角形三边长;
D、0.32+0.42=0.52,根据勾股定理的逆定理可知能作为直角三角形三边长.
故选:D.【题目点拨】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.4、D【分析】工作时间=工作总量÷工作效率.那么表示原来的工作时间,那么就表示现在的工作时间,10就代表原计划比现在多的时间.【题目详解】解:原计划每天铺设管道米,那么就应该是实际每天比原计划多铺了10米,而用则表示用原计划的时间−实际用的时间=10天,那么就说明每天比原计划多铺设10米,结果提前10天完成任务.
故选:D.【题目点拨】本题主要考查的是分式方程的实际应用,要注意方程所表示的意思,结合题目给出的条件得出正确的判断.5、B【分析】根据线段垂直平分线的性质得AE=BE,然后利用等量代换即可得到△ACE的周长=AC+BC,再把BC=6,AC=5代入计算即可.【题目详解】解:∵DE垂直平分AB,
∴AE=BE,
∴△ACE的周长=AC+CE+AE
=AC+CE+BE
=AC+BC
=5+6
=1.
故选B.【题目点拨】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.6、B【分析】根据同底数幂的运算法则对各项进行计算即可.【题目详解】A.a3+a6=a3+a6,错误;B.,正确;C.,错误;D.,错误;故答案为:B.【题目点拨】本题考查了同底数幂的运算,掌握同底数幂的运算法则是解题的关键.7、B【分析】如图,在直角△COD中,根据勾股定理求出CD的长,进而可得CB的长,然后与四辆车的车高进行比较即得答案.【题目详解】解:∵车宽是2米,∴卡车能否通过,只要比较距厂门中线1米处高度与车高即可.如图,在直角△COD中,∵OC=2,OD=1,∴米,∴CB=CD+BD=1.73+1.6=3.33米.∵2.8<3.33,3.1<3.33,3.4>3.33,3.7>3.33,∴这四辆车中车高为2.8米和3.1米的能够通过,而车高为3.4米和3.7米的则不能通过.故选:B.【题目点拨】本题考查了勾股定理在实际中的应用,难度不大,解题的关键是正确理解题意、熟练掌握勾股定理.8、A【分析】作DE⊥AB,根据角平分线的性质得到DE=CD,再根据勾股定理及三角形的面积公式即可求解.【题目详解】如图,作DE⊥AB,∵是的平分线,∴DE=CD∵在中,,,,∴AB=∵,∴=AB:AC=10:6=故选A.【题目点拨】此题主要考查角平分线的性质,解题的关键是熟知角平分线的性质及面积的公式.9、B【分析】先根据多边形外角和为360°且各外角相等求得边数,再根据多边形对角线条数的计算公式计算可得.【题目详解】解:根据题意,此正多边形的边数为360°÷45°=8,则该正多边形从一个顶点出发的对角线的条数为:8﹣3=5(条).故选:B.【题目点拨】本题主要考查了多边形的对角线,多边形的外角和定理,n边形从一个顶点出发可引出(n−3)条对角线.10、C【分析】根据分式的性质即可计算判断.【题目详解】x、y的值同时扩大为原来的10倍后,分式变为==10×,故扩大为原来的10倍,选C.【题目点拨】此题主要考查分式的性质,解题的关键是根据题意进行变形.二、填空题(每小题3分,共24分)11、125°【解题分析】解:∵∠A=65°,∠ABD=30°,∴∠BDC=∠A+∠ABD=65°+30°=95°,∴∠BEC=∠EDC+∠DCE=95°+30°=125°.故答案为125°.12、1【分析】根据分式的值为0的条件和分式有意义条件得出4-x1=0且x+1≠0,再求出即可.【题目详解】解:∵分式的值为0,
∴4-x1=0且x+1≠0,
解得:x=1,
故答案为:1.【题目点拨】本题考查分式的值为零的条件和分式有意义的条件,能根据题意得出4-x1=0且x+1≠0是解题的关键.13、【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【题目详解】解:∵点A(a,1)与点A′(5,b)关于y轴对称,∴a=﹣5,b=1,∴=﹣+(﹣5)=﹣,故答案为:﹣.【题目点拨】考核知识点:轴对称与坐标.理解性质是关键.14、80°或50°【解题分析】分两种情况:①当80°的角为等腰三角形的顶角时,底角的度数=(180°−80°)÷2=50°;②当80°的角为等腰三角形的底角时,其底角为80°,故它的底角度数是50或80.故答案为:80°或50°.15、1【分析】利用加权平均数的计算公式,进行计算即可.【题目详解】95×60%+90×40%=1(分)故答案为:1.【题目点拨】本题主要考查加权平均数的实际应用,掌握加权平均数的计算公式,是解题的关键.16、【分析】根据点A在正比例函数y=6x的图像上,设点A为(x,6x),由AB平行x轴,AB=BC,可以得到点B的坐标为:(7x,6x),代入计算,即可求出k的值.【题目详解】解:∵点A在正比例函数y=6x的图像上,则设点A为(x,6x),∵由AB平行x轴,∴点B的纵坐标为6x,∵△ABC是等腰直角三角形,∠ABC=90°,∴AB=BC=6x,∴点B的横坐标为:7x,即点B为:(7x,6x),把点B代入y=kx,则,∴;故答案为:.【题目点拨】本题考查了等腰直角三角形的性质,正比例函数的图像和性质,以及坐标与图形,解题的关键是利用点A的坐标,正确表示出点B的坐标.17、1【分析】根据CE垂直平分AD,得AC=CD,再根据等腰三角形的三线合一,得∠ACE=∠ECD,结合角平分线定义和∠ACB=90°,得∠ACE=∠ECD=∠DCB=30°,则∠A=60°,进而求得∠B=30°,则BD=CD=AC,由此即可求得答案.【题目详解】∵CE垂直平分AD,∴AC=CD=1,∴∠ACE=∠ECD,∵CD平分∠ECB,∴∠ECD=∠DCB,∵∠ACB=90°,∴∠ACE=∠ECD=∠DCB=30°,∴∠A=90°-∠ACE=60°,∴∠B=90°-∠A=30°,∴∠DCB=∠B,∴BD=CD=1,故答案为:1.【题目点拨】本题考查了线段垂直平分线的性质,等腰三角形的判定与性质,直角三角形两锐角互余等知识,准确识图,熟练掌握和灵活运用相关知识是解题的关键.18、50°或80°.【分析】等腰三角形一内角为80°,没说明是顶角还是底角,所以分两种情况讨论.【题目详解】(1)当80°角为底角时,其底角为80°;(2)当80°为顶角时,底角=(180°﹣80°)÷2=50°.故答案为:50°或80°.【题目点拨】本题考查了等腰三角形的性质及三角形的内角和定理;涉及到等腰三角形的角的计算,若没有明确哪个是底角哪个是顶角时,要分情况进行讨论.三、解答题(共66分)19、(1)平方米;(2)54平方米.【分析】(1)绿化的面积=长方形的面积-边长为米的正方形的面积,据此列式计算即可;(2)把a、b的值代入(1)题中的代数式计算即可.【题目详解】解:(1)平方米;(2)当时,.所以绿化的面积为54平方米.【题目点拨】本题主要考查了整式乘法的应用,正确列式、熟练掌握运算法则是解题的关键.20、见解析【分析】首先若使直线平分的面积,即作CB的中垂线,分别以线段CB的两个端点C,B为圆心,以大于CB的一半长为半径作圆,两圆交于两点,连接这两点,与CB的交点就是线段CB的中点,即为点D.【题目详解】根据题意,得CD=BD,即作CB的中垂线,如图所示:【题目点拨】此题主要考查直角三角形和中垂线的综合应用,熟练掌握,即可解题.21、(1)0,-1;(2)见解析;(3)-1.【分析】(1)根据题意,将m和n代入方程即可得解;(2)将每个对应点的坐标在直角坐标系中进行描点,即可得出图形,然后观察其特征即可;(3)将点P代入即可得出的值.【题目详解】(1)根据表格,得,∴m=0,n=-1;(2)如图所示,即为所求:该图形是一条直线;①经过第一、二、四象限;②与y轴交于点(0,5)(答案不唯一);(3)把x=﹣2a,y=a-1代入方程x+y=5中,得-2a+(a-1)=5,解之,得a=-1.【题目点拨】此题主要考查二元一次方程和平面直角坐标系综合运用,熟练掌握,即可解题.22、证明见试题解析.【解题分析】试题分析:首先根据∠ACD=∠BCE得出∠ACB=∠DCE,结合已知条件利用SAS判定△ABC和△DEC全等,从而得出答案.试题解析:∵∠ACD=∠BCE∴∠ACB=∠DCE又∵AC=DCBC=EC∴△ABC≌△DEC∴∠A=∠D考点:三角形全等的证明23、证△ABE≌△ADF(AD=AB、AE=AF)【分析】由题中条件AC平分∠BCD,AE⊥BC,AF⊥CD,可得AE=AF,由AB=AD,可由HL判定Rt△ABE≌Rt△ADF,即可得证.【题目详解】图中△ADF和△ABE全等.∵AC平分∠BCD,AF⊥CD,AE⊥CE;∴AF=AE,∠AFD=∠AEB=90°在Rt△ADF与Rt△ABE中,AB=AD,AF=AE∴Rt△ADF≌Rt△ABE.【题目点拨】本题考查的是全等三角形的判定定理HL,判定定理即“斜边,直角边判定定理”判定直角三角形全等.注意应用.24、(1)x=2;(2)x=1;(3);(4)【分析】先去括号,再合并,最后化系数为1即可.先去分母,在去括号,合并最后化系数为1.代入法求解即可.消元法求解即可.【题目详解】解:(1)2(x-3)-3(x-5)=7(x-1)2x-6-3x+15=7x-7,2x-3x-7x=-7+6-15,-8x=-16,x=2;(2)=15(7x-3)-2(4x+1)=10,35x-15-8x-2=10,35x-8x=10+15+2,27x=27,x=1;(3)把方程①代入方程②,得3x+2x+4=1x=1把x=1代入方程①,得y=-2所以,(4)①×2+②×3,得8x+9x=6+45x=3把x=3代入方程①,得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 附期限动产无偿赠与合同
- 人员聘用合同
- 中医主治讲解课件
- 疫情防控大讲堂课件视频
- 农户采购种子合同标准文本
- 催收中介服务合同标准文本
- 个人安装电梯合同标准文本
- 2012广告安装合同标准文本
- 企业茶叶供货合同标准文本
- 借款抵押汽车合同标准文本
- 河南郑州航空港区国际教育集团招聘考试真题2024
- 中小学校长在教师大会上讲话:以八项规定精神引领教育高质量发展根深・重明・规立・法新・行远
- 食品安全管理制度打印版
- 西交大政治考题及答案
- 关于除颤仪的试题及答案
- 2025年北京电子科技职业学院高职单招高职单招英语2016-2024历年频考点试题含答案解析
- 第一届贵州技能大赛铜仁市选拔赛平面设计技术文件
- 2025年陕西农业发展集团有限公司(陕西省土地工程建设集团)招聘(200人)笔试参考题库附带答案详解
- 2024-2025学年度一年级第二学期月考第一二单元语文试题(含答案)
- 2024-2025学年湖南省长沙市芙蓉区长郡双语洋湖实验中学九年级下学期入学考试英语试题(含答案)
- 高血压患者收缩压TTR和强化降压对心血管事件的影响
评论
0/150
提交评论